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Preface.

Solvability of quasilinear parabolic equations, that is, equations
with highest order elliptic operator dependent on the solution,
attracts attention since 1960s. It was considered in classical
literature, in particular, by A. Friedman (1964), O.A. Ladyzenskaja,
V.A. Solonnikov and N.N. Ural’ceva (1967), D. Gilbarg and
N.S. Trudinger (1983) in the elliptic case, A. Lunardi (1984),
H. Amann (1986, 1995), A. Yagi (2010) and many others.
Probably the most complete studies of the global in time solvability
of second order quasilinear parabolic equations can be found in the
classical monograph [L-S-U]. Variety of possible solutions to such
equations considered in Sobolev and Hölder spaces together with a
number of estimates can be found in this early reference.



It is known from the inspiring studies of H. Tanabe, H. Komatsu,
T. Kato and P.E. Sobolevskii in the 1960s, described briefly in the
last chapter of K. Yosida’s monograph, how to treat a general
inhomogeneous Cauchy problem

u′(t) = A(t)u(t) + F (t), t > 0,

u(0) = u0 ∈ X ,

in a complex Banach space X . A sufficient condition for that was
formulated in [TA] using the theory of analytic (holomorphic)
semigroups; see [Yo, Chapter XIV.5].
A local existence and uniqueness result of T. Kato [Ka] provides us
a tool to treat a Cauchy problem also for a quasilinear equation

u′(t) = A(t, u(t))u(t) + f (t, u(t)), t > 0,

constructing its solution as a limit of a sequence {ul}l of solutions
to the time dependent linear equations defined inductively as

u′l+1(t) = A(t, ul(t))ul+1(t) + f (t, ul(t)), t > 0,

ul+1(0) = u0.



In recent paper [Cz-D] we have used the semigroup technique of
[HE, Ch-D] to study more general examples within this approach.
In fact, similar methods can be applied to solve certain quasilinear
Cauchy problems of the form

ut = A(u)u + F (u), t > 0,

u(0) = u0.
(1)

We first solve its viscous semilinear regularizations with positive
parameters ε, δ:

uεt + ε(−∆)α+δuε = A(uε)uε + F (uε), t > 0,

uε(0) = u0,
(2)

where A(uε)uε + F (uε) is treated as a nonlinear perturbation of the
linear main part ε(−∆)α+δuε, then using the uniform in parameter
ε > 0 a priori estimates of uε, we let ε→ 0+ in (2) obtaining a
weak solution of the original problem (1) in the limit.
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The semigroup approach.
We will look at solutions to autonomous partial differential
equations within the theory of semigroups. The dynamics
generated by such equation, with initial data in a function space E,
can be described by the solution semigroup

T (t) : u(0)→ u(t),

that acts in the space E .

Definition
Let E be a metric space. A one parameter family {T (t)} of maps
T (t) : E → E , t ≥ 0, is called a C 0-semigroup if
I T(0) is the identity map on E ;
I T (t + s) = T (t)T (s) for all t, s ≥ 0;
I the function

[0,∞)× E 3 (t, x)→ T (t)x ∈ E

is continuous at each point (t, x) ∈ [0,∞)× E .



Semilinear equation with sectorial positive operator.
Following Dan Henry, our starting point are abstract semilinear
Cauchy problems with sectorial positive operator A:

ut + Au = F (u), t > 0,

u(0) = u0.
(3)

(compare [HE]). This category includes many important physical
equations, like; semilinear heat equation, Navier-Stokes equation,
subcritical Quasi-geostrophic equation. But we intent to study also
limits of such problems, certain quasilinear equations.
Let Sa,φ, a ∈ R and φ ∈ (0, π2 ), be a sector of the complex plane

Sa,φ = {λ ∈ C : φ ≤ |arg(λ− a)| ≤ π, λ 6= a}. (4)

Recall, that a linear, closed and densely defined operator
X ⊃ D(A)→ X in a Banach space X is called sectorial operator if
there exist a, φ as above and M > 0 such that:
I the resolvent set ρ(A) of A contains the sector Sa,φ,
I ‖(λI − A)−1‖L(X ,X ) ≤ M

|λ−a| , for each λ ∈ Sa,φ.



It is a familiar fact, that for self-adjoint operators in H which are
non-negative (m = 0), a square root operator can be defined. This
property can be extend to arbitrary positive (or even non-negative;
[M-S]) sectorial operators in a Banach space. The definition was
introduced by A.V. Balakrishnan in 1959/60 and studied in a series
of five papers by Hikosaburo Komatsu (e.g. [Ko]).
Recall then the Balakrishnan definition of fractional power of
non-negative operator; Let A be a closed linear densely defined
operator in a Banach space X , such that its resolvent set contains
(−∞, 0) and the resolvent satisfies:

‖λ(λ+ A)−1‖ ≤ M, λ > 0. (5)

Then, for η ∈ (0, 1), φ ∈ D(A),

Aηφ =
sin(πη)

π

∫ ∞
0

sη−1A(s + A)−1φds. (6)

There are extensions of the above definition valid for the powers
η ≥ 1 (e.g. [M-S]), and for negative powers (e.g. [HE]).



The Cauchy integral formula.
An abstract semilinear Cauchy’s problem with sectorial positive
operator has a solution (called ’mild solution’) given by the Cauchy
formula:

u(t, u0) = e−Atu0 +

∫ t

0
e−A(t−s)F (u(s, u0))ds, t ∈ [0, τu0), (7)

τu0 being the life time of the local solution corresponding to the
initial data u0. Here e−At is the semigroup corresponding to the
linear equation:

ut + Au = 0, t > 0,

u(0) = u0.
(8)

The integral is understood as a Bochner integral with values in a
Banach space. Two estimates valid for sectorial positive operators
are decisive when applying the Banach theorem to integral
equation; for certain positive constants c0, c1 and a as in (5)

‖e−At‖L(X ,X ) ≤ c0e
−at , t ≥ 0; ‖Ae−At‖L(X ,X ) ≤

c1
t
e−at , t > 0.

(9)



Local in time X α solutions.
The following local existence result is valid for the mild solutions to

ut + Au = F (u), t > 0,

u(0) = u0.
(10)

The solutions are varying continuously in the phase space Xα:

Theorem
(Dan Henry) Let X be a Banach space, A : D(A)→ X a sectorial
positive operator in X and F : Xα := D(Aα)→ X , be Lipschitz
continuous on bounded subsets of Xα for certain α ∈ (0, 1). Then,
for each u0 ∈ Xα, there exists a unique mild solution of (3)
defined on its maximal interval of existence [0, τu0), having the
following properties:

u ∈ C 0([0, τu0),X
α) ∩ C 1((0, τu0),X ), u(t) ∈ D(A) t ∈ (0, τu0),

ut ∈ C 0((0, τu0),X
γ), γ < α.

Moreover, the equation (3) is satisfied in X for all t ∈ (0, τu0).



In order to study higher regularity of solutions the above local
existence result will be naturally generalized. The idea of
[Am, Ch-D, Cz-D] was to consider the connected with sectorial
positive operator A fractional powers Aα, α ∈ R, together with
their domains D(Aα) =: Xα.
We are using further the fractional power scale of Banach spaces
{Xα}α∈J , J being the interval [0,∞) or [−1,∞) (see [Am]).
Denoting by A the realization of the positive sectorial operator in a
chosen base space X β, β ∈ J, from the scale, we are considering a
semilinear abstract Cauchy problem in X β

ut + Au = F (u), t > 0, u(0) = u0, (11)

under the assumption that the nonlinearity

F : Xα → X β with some α ∈ J, 0 ≤ α− β < 1,

is Lipschitz continuous on bounded subsets of Xα.
(12)

Note that A takes isometrically X β+1 onto X β and the phase
space Xα is intermediate between X β+1 and X β with dense and
continuous embeddings. Local existence result extends naturally.



Global in time extendibility of local solutions.
Following [Ch-D, Theorem 3.1.1] and [WA], we recall:
Theorem. Let Y be a normed space such that X β+1 ⊂ Y , u0 an
initial data from the phase space Xα and u the corresponding
solution of (11) defined on the maximal interval of existence
[0, τu0). Let 0 < T ≤ ∞ and ζ ∈ [α, β + 1). Assume that for each
v0 ∈ X ζ the corresponding solution v of (11) satisfies an a priori
estimate;

∃C=C(v0,T )>0 ‖v(t)‖Y ≤ C, t ∈ (0,min{τζ,v0 ,T}) (13)

where τζ,v0 denotes the life time in the phase space X ζ . Let for
some θ ∈ [0, 1) and a nondecreasing function g : [0,∞)→ [0,∞)

‖F (v(t))‖Xβ ≤ g(‖v(t)‖Y )
(

1 + ‖v(t)‖θX ζ

)
, t ∈ (0,min{τζ,v0 ,T}).

(14)
Then u is a bounded solution in Xα defined on [0,T ).
Condition (14) express the fact that the nonlinearity F (on the
solution) is controlled through the θ-root of Aα together with (13).
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Examples of quasilinear problems.
The announced above abstract approach to quasilinear problems
was illustrated in [Cz-D] by the following three examples.

1. The parabolic Kirchhoff equation,

ut = M(

∫
Ω
|∇u|2dx)∆u + f (u), x ∈ Ω, t > 0, (15)

where the main operator depends on the norm of the solution.
We regularize (15) with higher order operator ε(−∆)1+δ.

2. A quasilinear reaction-diffusion equation

ut = a(u)∆u + f (x , u,∇u) in (0,T )× Ω, (16)

considered under suitable assumptions on a and f .
3. Dirichlet problem for the critical 2D surface quasi-geostrophic

equation

θt + u · ∇θ + κ(−∆)
1
2 θ = f , x ∈ Ω ⊂ R2, t > 0. (17)

By perturbing (17) with −ε∆θ, we prove existence of a weak
solution defined on an arbitrarily long time interval.



3D Navier-Stokes equations.
While evidently the most exciting application of that technique is
dedicated to the 3D Navier-Stokes equation. Dirichlet problem for
classical 3-D Navier-Stokes equations has the form:

ut = ν∆u −∇p − (u · ∇)u + f , divu = 0, x ∈ Ω, t > 0,

u = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x),

(18)

ν > 0 is the viscosity coefficient, u = (u1(t, x), u2(t, x), u3(t, x))
denotes velocity, p = p(t, x) pressure, f = (f1(x), f2(x), f3(x))
external force, and Ω ⊂ R3 is a bounded domain with C 2

boundary. Applying the projector P to subspace of divergence free
functions, problem (18) will be written equivalently as

ut + Au = −P(u · ∇)u + Pf , t > 0,

u(0) = u0.
(19)



Proper choice of the level (at the fractional power scale associated
with the Stokes operator) at which the N-S equation will be settled
is important for simplicity of construction of the solution. Vital
here are estimates of nonlinear term, due to [G-M, Lemma 2.1],
which in a simplest case reads:

Corollary
For each j , 1 ≤ j ≤ N, the operator A−

1
2P ∂

∂xj
extends uniquely to a

bounded linear operator from [Lr (Ω)]N to Xr , 1 < r <∞.
Consequently, the following estimate holds:

‖A−
1
2P(u · ∇)v‖[Lr (Ω)]N ≤ M(r)‖|u||v |‖[Lr (Ω)]N . (20)

We formulate next an important estimate needed further in the
text, a consequence of Corollary 3. For all N ∈ N:

‖A−
1
2P(u · ∇)v‖[L2(Ω)]N ≤ c‖|u||v |‖[L2(Ω)]N ≤ c‖u‖[L4(Ω)]N‖v‖[L4(Ω)]N ,

‖P(u · ∇)v‖[L2(Ω)]N ≤ c‖u‖[L4(Ω)]N‖∇v‖[L4(Ω)]N .

(21)



A generalization of the classical Navier-Stokes equations containing
higher order viscosity term was proposed in 1969 by J.-L. Lions;
[Li, Chapt.1]. We consider here the regularization:

ut = −Au − εAsu + F (u) + Pf , (22)

with s > 54 (close to 54), and denote its solution by uε. Applying to

(22) operator A−s+ 12 we get

A−s+ 12 uεt = −A−s+ 32 uε − εA
1
2 uε + A−s+ 12F (uε) + A−s+ 12Pf . (23)

Using to nonlinearity the estimate of [G-M, Lemma 2.2] with
δ = s − 12 , ε = s − 1, we get

‖A−δF (uε)‖[L2(Ω)]3 ≤ c‖|uε|2‖[Lz (Ω)]3 ≤ c ′‖uε‖2[L2z (Ω)]3

≤ c ′′‖uε‖
7
2−2s
[H1(Ω)]3

‖uε‖2s−
3
2

[L2(Ω)]3
= c ′′′‖A

1
2 uε‖

7
2−2s
[L2(Ω)]3

‖uε‖2s−
3
2

[L2(Ω)]3
,

(24)

where z = 6
3+4(s−1) <

3
2 (but close). By the standard [L2(Ω)]3

estimate, all the right hand side components in (23) belong to
L2(0,T ; [L2(Ω)]3); note that 72 − 2s < 1 in (24)). Consequently,

A−s+ 12 uεt ∈ L2(0,T ; [L2(Ω)]3), or uεt ∈ L2(0,T ;D(A−s+ 12 )).



Using weak formulation of the problems (22) and the mentioned
uniform in ε > 0, δ > 0 a priori estimates we are able to let ε→ 0
and obtain a weak solution to the original Navier-Stokes equations
in such limit; moreover, this is the classical J. Leray’s weak
solution from [LE]. Since the procedure of passing to the limit is
standard nowadays, we will skip it here showing however what will
hapened with the extra term (added to the equation); it follows
from the standard L2 a priori estimate for (22) that:

√
ε‖A

s
2 uε‖L2(0,T ;[L2(Ω)]3) ≤ const, (25)

with const independent on ε > 0. We recall next a weak
formulation of the approximating equations (22):

< uεt , v >[L2(Ω)]3 = − < A
1
2 uε,A

1
2 v >[L2(Ω)]3 −ε < A

s
2 uε,A

s
2 v >[L2(Ω)]3

+ < F (uε), v >[L2(Ω)]3 + < Pf , v >[L2(Ω)]3 ,

with arbitrary ‘test function’ v ∈ D(A
s
2 ). Uniform with respect to

parameters ε > 0, s > 54 a priori estimates allow to let ε→ 0 in the
last formula, obtaining a weak solution of the original N-S equation
in the limit. We omit technical details here.



Kirchhoff equation.

Due to time limitation I will draw only one more application of that
technique to the Kirchhoff equation (15). The problem proposed
to approximate solutions of quasilinear equation (15) reads:

uεt = −ε(−∆)1+δuε + M(

∫
Ω
|∇uε|2dx)∆uε + f (uε),

uε(t, x) = 0, x ∈ ∂Ω, t > 0, uε(0, x) = u0(x), x ∈ Ω,

(26)

where, to avoid introducing extra boundary conditions we assume
that 0 < δ < 14 is fixed and also that ε ∈ (0, 1).
Proposed approximation is a semilinear parabolic problem, and we
are able to apply the standard unified semigroup approach (see
[HE, Ch-D]). Note that the operator M(

∫
Ω |∇u|

2dx)∆u will be
treated here as a part of the nonlinearity. There are also good a
priori estimates both for the original problem (15) and for (26),
allowing to let ε→ 0 and get a weak solution of (15) in the limit.



Assuming that; Ω is a bounded C 2 domain in RN , N ≥ 1,
M : [0,+∞)→ R is a locally Lipschitz continuous satisfying

M(s) ≥ m0 > 0 for any s ≥ 0, (27)

f : R→ R is a locally Lipschitz, and

|f (s1)− f (s2)| ≤ c0|s1− s2|(1 + |s1|ρ−1+ |s2|ρ−1), s1, s2 ∈ R, (28)

holds with 1 ≤ ρ ≤ N
N−2 for N ≥ 3 and arbitrary ρ ≥ 1 for N = 2.

Consequently, the nonlinearity F (u) = M(‖∇u‖2L2(Ω))∆u + f (u) is

a Lipschitz map on bounded subsets of X
1
1+δ = D(−∆) ⊂ H2(Ω)

with values in X 0 = L2(Ω).

Theorem
Assume that (27) and (28) hold. For arbitrarily fixed δ ∈ (0, 14)
and any ε ∈ (0, 1) and u0 ∈ D(−∆) there exists a unique local in
time solution uε to the approximating problem (26) enjoying the
following regularity properties:

uε ∈ C ([0, τu0);D(−∆))∩C ((0, τu0);D((−∆)1+δ)),

uεt ∈ C ((0, τu0);D((−∆)(1+δ)−)),

where τu0 > 0 is the life time of the local solution uε, i.e.,

lim sup
t→τu0

‖uε(t)‖D(−∆) =∞ if τu0 <∞.



Standard procedure gives a priori estimate in H10 (Ω). Multiplying
(26) by uεt and integrating we find a Lyapunov function:∫

Ω
(uεt )2dx = − d

dt

( ε
2

∫
Ω

[(−∆)
1+δ
2 uε]2dx +

1
2
M(‖∇uε‖2L2(Ω))

−
∫

Ω
F(uε)dx

)
,

where F(s) =
∫ s
0 f (σ)dσ is a primitive of f and

M(s) =
∫ s
0 M(σ)dσ a primitive of M. Consequently, for

v ∈ D((−∆)
1+δ
2 ), the function

Lε(v) :=
ε

2

∫
Ω

[(−∆)
1+δ
2 v ]2dx +

1
2
M(‖∇v‖2L2(Ω))−

∫
Ω
F(v)dx ,

is nonincreasing in time along the solution uε(t, x), that is,

Lε(uε(t, ·)) ≤ Lε(u0), t ∈ [0, τu0). (29)



By (27) M, the primitive of M, satisfies

M(s) =

∫ s

0
M(σ)dσ ≥ m0s, s ∈ R. (30)

To control the H10 (Ω) norm, we require that f : R→ R satisfies

lim sup
|s|→∞

f (s)

s
≤ 0. (31)

Then, as shown e.g. in [Ha, p.76], for any ν > 0 there exists
Cν > 0 such that

F(s) =

∫ s

0
f (σ)dσ ≤ νs2 + Cν , s ∈ R. (32)

With the above assumptions a uniform in ε ∈ (0, 1), valid for any
u0 ∈ D(−∆) a priori estimate holds:

‖uε‖C([0,∞);H10 (Ω)) + ‖
√
εuε‖

1+δ
2

C([0,∞);D((−∆))) ≤ C, ε ∈ (0, 1), (33)

with a positive constant C independent of ε.
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