## TRIPLE JUNCTION SOLUTION FOR THE ALLEN-CAHN SYSTEM

#### Zhiyuan Geng joint work with Nicholas D. Alikakos

Purdue University

Partial Differential Equations Conference June 10-12, 2025, Athens

## ENERGY FUNCTIONAL AND HYPOTHESIS

Consider the energy functional

$$J(u,\Omega) := \int_{\Omega} \left( \frac{1}{2} |\nabla u|^2 + W(u) \right) \, dx, \ \forall \Omega \subset \mathbb{R}^2, \ u : \Omega \to \mathbb{R}^2.$$
(1)

The Euler-Lagrange equation is

$$\Delta u - W_u(u) = 0, \tag{2}$$

## ENERGY FUNCTIONAL AND HYPOTHESIS

Consider the energy functional

$$J(u,\Omega) := \int_{\Omega} \left( \frac{1}{2} |\nabla u|^2 + W(u) \right) \, dx, \ \forall \Omega \subset \mathbb{R}^2, \ u : \Omega \to \mathbb{R}^2.$$
(1)

The Euler-Lagrange equation is

$$\Delta u - W_u(u) = 0, \tag{2}$$

(H1). W 
$$\in C^2(\mathbb{R}^2; [0, +\infty)), \{z : W(z) = 0\} = \{a_1, a_2, a_3\}, \text{ and}$$
  
 $c_2 |\xi|^2 \ge \xi^T W_{uu}(a_i)\xi \ge c_1 |\xi|^2, \ i = 1, 2, 3.$ 

(H2). Existence of heteroclinic connections:  $\forall i \neq j, \exists U_{ij} \in W^{1,2}(\mathbb{R}, \mathbb{R}^2)$  be an 1D minimizer of

$$\sigma_{ij} := \min \int_{\mathbb{R}} \left( \frac{1}{2} |U'|^2 + W(U) \right) \, d\eta, \quad \lim_{\eta \to -\infty} U(\eta) = a_i, \ \lim_{\eta \to +\infty} U(\eta) = a_j.$$

 $\sigma_{ij}$  satisfies

$$\sigma_{ij} < \sigma_{ik} + \sigma_{jk}, \quad \forall \{i, j, k\} = \{1, 2, 3\}.$$
 (3)

ZHIYUAN GENG

TRIPLE JUNCTION SOLUTION

### DIRICHLET PROBLEM ON THE UNIT DISK

$$\min_{u \in \mathcal{A}} \int_{B_1(0)} \left( \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \right) \, dx =: \min_{u \in \mathcal{A}} J_{\varepsilon}(u), \tag{4}$$

within the admissible set

$$\mathcal{A} = \{ u \in W^{1,2}(B_1) : u = g_{\varepsilon} \text{ on } \partial B_1 \}.$$

 $g_{\varepsilon}$  is a smooth function connecting the three phases in  $O(\varepsilon)$  intervals.

$$I_{\varepsilon,\gamma} := \{ x \in B_1 : |u_{\varepsilon}(x) - a_i| > \gamma, \, \forall i \}.$$





<u>Problem</u>: geometric/analytic description of the diffuse interface  $I_{\varepsilon,\gamma}$ .

Zhiyuan Geng

## **ENTIRE SOLUTION**

Blowup:  $u_{\varepsilon}(\varepsilon x + x_0)$ . Pick the blowup center  $x_0$  as the approximate location of the junction point. As  $\varepsilon \to 0$ , one expects that it converges to an entire minimizing solution of

$$\Delta u - W_u(u) = 0, \quad u : \mathbb{R}^2 \to \mathbb{R}^2$$

connecting the three phases at infinity.

<u>Problem</u>: asymptotic behavior of *u* at infinity.

$$u(rx) \xrightarrow[r \to \infty]{L^1_{loc}(\mathbb{R}^2)} u_{\mathcal{P}}(x) = \sum_{i=1}^3 a_i \chi_{D_i}.$$

## MINIMIZING PARTITION OF $\mathbb{R}^2$

Let

$$\mathcal{P} = \{D_1, D_2, D_3\},\$$

which is a partition of the plane into three sectors with angles  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ , which satisfies Young's law, that is

$$\frac{\sin \alpha_1}{\sigma_{23}} = \frac{\sin \alpha_2}{\sigma_{13}} = \frac{\sin \alpha_3}{\sigma_{12}}.$$
 (5)



**Figure.** The partition  $\mathcal{P} = \{D_1, D_2, D_3\}$ 

 $\mathcal{P}$  is a minimizing partition of  $\mathbb{R}^2$  that minimizes the following functional:

$$\min \sum_{i < j} \sigma_{ij} \mathcal{H}^1(\partial(D_i \cap \Omega) \cap \partial(D_j \cap \Omega)).$$
  
When  $\underline{\sigma_{ij} \equiv \sigma}$ ,  $\alpha_i = 120^\circ$  for  $i = 1, 2, 3$ . Triple junction map:  $u_{\mathcal{P}} = \sum_{i=1}^3 a_i \chi_{D_i}.$ 

## Related result: Gamma convergence

(Fonseca-Tartar, 89'), (Baldo, 90'), (Sternberg-Zeimer, 94'), (Gazoulis, 22'): Let  $u_{\varepsilon}$  be a minimizer of the Dirichlet problem,

$$\lim_{\varepsilon\to 0}\|u_{\varepsilon}-u_{\mathcal{P}}\|_{L^1(B_1)}=0,$$

where  $u_{\mathcal{P}} = \sum_{i=1}^{3} a_i \chi_{D_i}$ .

<u>Limitations</u>:

No rate of convergence for

$$\lim_{\varepsilon\to 0}\int_{B_1}\left(\frac{\varepsilon}{2}|\nabla u_\varepsilon|^2+\frac{1}{\varepsilon}W(u_\varepsilon)\right)\,dx=\sum_{i\neq j}\sigma_{ij}.$$

- Does not yield a nontrivial blow-up limit near the triple junction.
- ▶ No monotonicity formula for the Allen-Cahn system (Contrary to the scalar case).

## Related result: convergence of $u_{\varepsilon}$

For 2D domain  $\Omega$ , for the general setting with several energy wells  $\{a_1, ..., a_k\}$ , let  $u_{\varepsilon}$  be a solution (not minimizing) of

$$\Delta u_{\varepsilon} = \frac{1}{\varepsilon^2} W_u(u_{\varepsilon}), \quad u: \Omega \to \mathbb{R}^2.$$

#### Theorem (Bethuel, 20')

There exists a 1D rectifiable subset  $\Gamma$  and a singular set  $\mathcal{S} \subset \Gamma$  such that

- 1.  $u_{\varepsilon_n} \to a_i$  uniformly on every connected compact set of  $\Omega \setminus \Gamma$ .
- 2.  $\mathcal{H}^1(\mathcal{S}) = 0$ ; for every  $x_0 \in \Gamma \setminus \mathcal{S}$ ,  $\Gamma$  is locally a segment.
- 3.  $\frac{W(u_{\varepsilon_n})}{\varepsilon_n} \to \zeta$  in the sense of measures on  $\Omega$ , for some measure  $\zeta$  concentrating on  $\Gamma$ .
- 4. Define the 1D density  $\Theta(x) = \liminf_{r \to 0} \frac{\zeta(B(x,r))}{2r}$ . The rectifiable one-varifold  $V(\Gamma, \Theta)$  corresponding to the measure  $\zeta$  is stationary.



## **R**ELATED RESULT: SYMMETRIC SOLUTIONS

Junctions.

- ▶  $W \circ g = W$ ,  $u \circ g = g \circ u$ ,  $g \in G$  that is the group of isometries of the equilateral triangle, (Bronsard-Gui-Schatzman, 96').
- ▶ Triple junction in equivalent class of rotation group, (Fusco, 22').
- ▶ n = 3, *W* is a 4-well potential, existence of solution that is invariant with respect to the symmetries of the tetrahedron, (Gui-Schatzman, 08').

These solutions are *not stable* under general perturbations.



## ENERGY LOWER & UPPER BOUNDS FOR DIRICHLET PROBLEM

#### Proposition 1 (Alikakos-G, 24')

*There exists a constant* C(W) *such that for*  $\varepsilon \ll 1$ *,* 

$$\sigma_{12} + \sigma_{23} + \sigma_{13} - C\varepsilon^{\frac{1}{2}} \le \int_{B_1} \left( \frac{\varepsilon}{2} |\nabla u_{\varepsilon}|^2 + \frac{1}{\varepsilon} W(u_{\varepsilon}) \right) \, dx \le \sigma_{12} + \sigma_{23} + \sigma_{13} + C\varepsilon. \tag{6}$$

## ENERGY LOWER & UPPER BOUNDS FOR DIRICHLET PROBLEM

#### Proposition 1 (Alikakos-G, 24')

*There exists a constant* C(W) *such that for*  $\varepsilon \ll 1$ *,* 

$$\sigma_{12} + \sigma_{23} + \sigma_{13} - C\varepsilon^{\frac{1}{2}} \le \int_{B_1} \left( \frac{\varepsilon}{2} |\nabla u_{\varepsilon}|^2 + \frac{1}{\varepsilon} W(u_{\varepsilon}) \right) \, dx \le \sigma_{12} + \sigma_{23} + \sigma_{13} + C\varepsilon. \tag{6}$$

Upper bound: direct construction of an energy competitor.

 Lower bound: estimate the energy by integrating the energy over 1D slices from different directions.



**Figure.** red: *a*<sub>1</sub>; green: *a*<sub>2</sub>; blue: *a*<sub>3</sub>

Suppose  $\exists y^*$  such that on  $\{y = y^*\}$ ,  $u_{\varepsilon}$  equals to  $a_1$  on the left half and  $a_2$  on the right half. And in the region  $\{y < y_*\}$  there is a vertical line on which  $u_{\varepsilon}$  equals to  $a_3$ .

Then on each subdomain, the boundary condition implies the lower bound  $\sigma_{12} + \sigma_{23} + \sigma_{13}$ . The key is to "find" these interior boundaries.

## LOCALIZATION OF $I_{arepsilon,\gamma}$

We use the upper/lower bounds to show that the diffuse interface  $I_{\varepsilon,\gamma}$  is contained in an  $O(\varepsilon^{\frac{1}{4}})$  neighborhood of the sharp interface  $\partial \mathcal{P}$ .

#### Proposition 2 (Alikakos-G, 2024)

 $\exists$  *a* constant  $\gamma_0$  s.t. for any  $0 < \gamma \leq \gamma_0$ ,  $\exists$  constants  $C = C(\gamma, W)$ 

 $I_{\varepsilon,\gamma} \subset N_{C\varepsilon^{\frac{1}{4}}}(\partial \mathcal{P}), \quad \forall \varepsilon \ll 1.$ 

*Moreover,*  $\exists$  *positive K and k s.t.* 

$$|u(x) - a_i| \le Ke^{-\frac{k}{\varepsilon}(\operatorname{dist}(x,\partial \mathcal{P}) - C\varepsilon^{\frac{1}{4}})^+}, \quad x \in D_i, \ \forall i.$$



**Figure.** The deviation of the level set  $\{|u - a_1| = \gamma\}$  from the limit interface  $\partial \mathcal{P}$  generates large energy in 2D.

## WIDTH OF THE TRANSITION LAYER

Set

$$\Gamma^{i}_{\varepsilon,\gamma} := \{ x \in \overline{B}_{1} : |u_{\varepsilon}(x) - a_{i}| = \gamma \}.$$
  
 $\partial I_{\varepsilon,\gamma} \subset \bigcup_{i=1}^{3} \Gamma^{i}_{\varepsilon,\gamma}.$ 

## Proposition 3 ( $O(\varepsilon)$ width of the transition layer)

Fix small  $\gamma$ .  $\exists C = C(\gamma, W)$  s.t. for any  $i \in \{1, 2, 3\}$  and  $\varepsilon \ll 1$ ,  $\Gamma^{i}_{\varepsilon, \gamma} \subset N_{C\varepsilon}(\bigcup_{j \neq i} \Gamma^{j}_{\varepsilon, \gamma}).$ 

 Tool: vector version of Caffarelli-Córdoba density estimate.



**Figure.** The width of  $I_{\varepsilon,\gamma}$  is  $O(\varepsilon)$ .

#### Theorem (Alikakos-G, 24')

*There is an entire, bounded minimizing solution such that, along a sequence*  $r_k \rightarrow \infty$ *,* 

$$u(r_k x) \to u_{\mathcal{P}}(x) \quad in \ L^1_{loc}(\mathbb{R}^2), \tag{7}$$

where  $u_{\mathcal{P}} = \sum_{i=1}^{3} a_i \chi_{D_i}$ .  $\mathcal{P} = \{D_1, D_2, D_3\}$  gives a minimal partition of  $\mathbb{R}^2$ .

### Theorem (Alikakos-G, 24')

*There is an entire, bounded minimizing solution such that, along a sequence*  $r_k \rightarrow \infty$ *,* 

$$u(r_k x) \to u_{\mathcal{P}}(x) \quad in \ L^1_{loc}(\mathbb{R}^2), \tag{7}$$

where  $u_{\mathcal{P}} = \sum_{i=1}^{3} a_i \chi_{D_i}$ .  $\mathcal{P} = \{D_1, D_2, D_3\}$  gives a minimal partition of  $\mathbb{R}^2$ .

 $\blacktriangleright \exists P_{\varepsilon}, Q_{\varepsilon}, R_{\varepsilon} \text{ s.t.}$ 

 $u(P_{\varepsilon}) \sim a_1, \ u(Q_{\varepsilon}) \sim a_2, \ u(R_{\varepsilon}) \sim a_3,$  $\operatorname{dist}(P_{\varepsilon}, Q_{\varepsilon}), \operatorname{dist}(Q_{\varepsilon}, R_{\varepsilon}) \sim O(\varepsilon).$ 

- For every r,  $\exists P(r)$  s.t. dist $(P(r), P_{\varepsilon}) = r$ ,  $u(P(r)) \sim a_1$ .
- ►  $\exists \{Q_j\}, \{R_j\} \text{ s.t. } u(Q_j) \sim a_2, u(R_j) \sim a_3, \text{ and } \text{dist}(Q_j, P_{\varepsilon}) \leq Cj\varepsilon, \text{ dist}(R_j, P_{\varepsilon}) \leq Cj\varepsilon.$



**Figure.** Triplets of points, close to  $a_1, a_2, a_3$  respectively.

Roughly at the same time, Sandier and Sternberg obtained comparable results. Under the assumption that the heteroclinic connection  $U_{ij}$  is unique, they proved:

## Theorem (Sandier-Sternberg, 24')

*For any*  $r_k \rightarrow \infty$  *(up to a possible subsequence),* 

 $u(r_k x) \rightarrow u_{\mathcal{P}} \text{ in } L^1_{loc}(\mathbb{R}^2),$ 

where  $u_{\mathcal{P}}$  is a triple junction map which might depend on  $\{r_k\}$ .

Roughly at the same time, Sandier and Sternberg obtained comparable results. Under the assumption that the heteroclinic connection  $U_{ij}$  is unique, they proved:

### Theorem (Sandier-Sternberg, 24')

*For any*  $r_k \rightarrow \infty$  *(up to a possible subsequence),* 

 $u(r_k x) \to u_{\mathcal{P}} \text{ in } L^1_{loc}(\mathbb{R}^2),$ 

where  $u_{\mathcal{P}}$  is a triple junction map which might depend on  $\{r_k\}$ .

Pohozaev identity.

$$\frac{d}{dR}\left(\frac{1}{R}\int_{B_R} W(u)\right) = \frac{1}{2R}\int_{\partial B_R}\left(\frac{1}{2}|u_{\nu}|^2 - \frac{1}{2}|u_s|^2 + W(u)\right)$$

• Asymptotic energy equipartition.

$$\left|\int_{B_R} (\sqrt{W(u)} - \frac{1}{\sqrt{2}} |\nabla u|)^2\right| \le CR^{\alpha}, \ \alpha \in (0, 1).$$

## UNIQUENESS OF THE BLOW-DOWN LIMIT

#### Theorem (G, 24')

*There exists a minimizing partition*  $\mathcal{P} = \{D_i\}_{i=1}^3$  *such that* 

 $\lim_{r\to\infty}\|u(rx)-u_{\mathcal{P}}\|_{L^1(B_1)}=0,$ 

where  $u_{\mathcal{P}} = \sum_{i=1}^{3} a_i \chi_{D_i}$  is the unique blow-down limit at infinity.

## UNIQUENESS OF THE BLOW-DOWN LIMIT

#### Theorem (G, 24')

*There exists a minimizing partition*  $\mathcal{P} = \{D_i\}_{i=1}^3$  *such that* 

 $\lim_{r\to\infty}\|u(rx)-u_{\mathcal{P}}\|_{L^1(B_1)}=0,$ 

where  $u_{\mathcal{P}} = \sum_{i=1}^{3} a_i \chi_{D_i}$  is the unique blow-down limit at infinity.

#### **Corollary (Sharp energy bounds)**

*There exists a constant* C = C(u) *such that for any* R > 0*,* 

$$R(\sigma_{12} + \sigma_{23} + \sigma_{13}) - C \le \int_{B_R} \left(\frac{1}{2}|\nabla u|^2 + W(u)\right) dx \le R(\sigma_{12} + \sigma_{23} + \sigma_{13}) + C.$$

## SKETCH OF THE PROOF

- 1. For any *R* sufficiently large,  $\exists R_0 \in [R, 2R]$  such that *u* satisfies a well-behaved boundary condition on  $\partial B_{R_0}$ , i.e.  $u|_{\partial B_{R_0}}$  is close to a triple junction map.
- 2. Rescale  $B_{R_0}$  to  $B_1$ . Utilize the energy lower & upper bounds to localize the diffuse interface of  $u_{R_0}$  in a  $R_0^{-\alpha}$  neighborhood of the optimal triple junction map  $\bar{u}_{R_0}$ .



**Figure.** Optimal triple junction map  $\bar{u}_{R_0}$  on  $B_{R_0}$ 

3. Compare the optimal triple junction map  $\bar{u}_{R_1}$  for  $R_1 \in [2R, 4R]$  with  $\bar{u}_{R_0}$  to obtain

 $\|\bar{u}_{R_0}-\bar{u}_{R_1}\|_{L^1(B_1)} \leq CR_0^{-\alpha}.$ 

4. Iterate the above estimate to all the scales  $R_k \in [2^k R, 2^{k+1} R]$  to get

$$\|\bar{u}_{R_i} - \bar{u}_{R_j}\|_{L^1(B_1)} \le C2^{-\alpha \cdot \min\{i,j\}},$$

which converges to 0 as i, j tend to  $\infty$ .



**Figure.** Optimal triple junctions at two consecutive scales must be close to each other

# Asymptotic flatness of the diffuse interface at infinity

By assuming the uniqueness of the heteroclinic connection  $U_{ij}$ , we show that u is almost invariant along the direction of the sharp interface.

#### Theorem (G, 24')

*Suppose the 1D heteroclinic connection*  $U_{ij}$  *of two phases is unique. Then for any*  $i \neq j$ *, there exists a constant h such that* 

$$\lim_{x\to+\infty}\|u(x\mathbf{e}_{ij}+y\mathbf{e}_{ij}^{\perp})-U_{ij}(y-h)\|_{C^{2,\alpha}(\mathbb{R})}=0,$$

*where*  $\mathbf{e}_{ij}$  *is the unit vector parallel to*  $\partial D_i \cap \partial D_j$ *.* 

#### SKETCH OF THE PROOF

WLOG, let  $\mathbf{e}_{ij} = (1, 0)$ ,  $\mathbf{e}_{ij}^{\perp} = (0, 1)$ .

- 1. For any  $x \gg 1$ ,  $\exists ! h(x)$  s.t.  $||u(x,y) U_{ij}(y h(x))||_{L^2}$  is minimized (Schatzman 02').
- 2. Direct calculation yields

$$\begin{aligned} |h'(x)| &= \left| \frac{\int_{\mathbb{R}} \partial_x u \cdot U'_{ij}(y - h(x)) \, dy}{\int_{\mathbb{R}} \left( |U'_{ij}|^2 + U''_{ij}(y - h(x))(u(x, y) - U_{ij}(y - h(x))) \right) \, dy} \right| \\ &\leq C \int_{-\infty}^{\infty} |\partial_x u(x, y)|^2 \, dy \end{aligned}$$

3. Use the tight energy bounds to show

$$\int_{x>0} |\partial_x u(x,y)|^2 \, dx \, dy < \infty$$

٠

## A VECTOR VERSION OF DE GIORGI CONJECTURE

Suppose  $u : \mathbb{R}^2 \to \mathbb{R}^2$  is a minimizing solution of  $\Delta u = W_u(u)$ , where *W* is a double-well potential. Assume the uniqueness of the heteroclinic connection  $U_{12}$ .

#### Theorem (Sandier-Sternberg, 24'; G, 24')

*If for each*  $x \in \mathbb{R}$ *,* 

$$\lim_{y\to\infty} u(x,y) = a_1, \quad \lim_{y\to-\infty} u(x,y) = a_2,$$

then *u* is a one-dimensional solution, i.e. there exists a unit vector  $\mathbf{e} \neq (1,0)$  and a constant *h* such that

$$u(z) = U_{12}(z \cdot \mathbf{e} - h), \ \forall z \in \mathbb{R}^2.$$

## FURTHER DIRECTIONS

- 1. 2D problems:
  - Symmetry of potential implies symmetry of solution?
  - For unequal  $\sigma_{ij}$ , construct N-junction (N > 3) solutions.
- 2. 3D problems:
  - For a triple-well potential, does a minimizing solution necessarily be a cylindrical triple junction?
  - For a quadruple-well potential, the existence of an entire solution with a quadruple junction profile.
- 3. Gradient flow: motion of the junction point.

## Thank You!