Front Propagation through a Perforated Wall

> Hiroshi Matano (Meiji University)

Partial Differential Equations Conference

University of Athens, 10--12 June, 2025

Outline

- 1. Introduction
- 2. Formulation of the problem
- 3. Propagation/blocking dichotomy
- 4. Sufficient conditions for **blocking**
- 5. Sufficient conditions for propagation

1. Introduction

Joint work with Henri Berestycki (EHESS) François Hamel (Aix-Marseille)

Bistable RD equation

$$\frac{\partial u}{\partial t} = \Delta u + f(u) \quad \text{on } \mathbb{R}^N$$

 $f(0) = f(\alpha) = f(1) = 0, \quad f'(0) < 0, \ f'(1) < 0$

Existence of traveling wave

$$\frac{f(u)}{0} \qquad 1 \qquad u$$

f(u): bistable

$$\int_0^1 f(s)ds > 0$$

unbalanced

1D
$$u_t = u_{xx} + f(u)$$
 $u(x,t) = \phi(x - ct), \ c > 0$

: TW profile

Fife & McLeod (ARMA1977)

potential

$$W(u) = -\int_{0}^{u} f(s) ds$$

$$u$$

$$u$$
unequal well-depth

Description of the obstacle

Obstacle (wall)

 $K \subset \{x \in \mathbb{R}^N \mid 0 \le x_1 \le M\}$

finite thickness

 $\Omega := \mathbb{R}^N \setminus K \text{ connected } \partial \Omega \text{ smooth}$

For some results we also assume periodicity

$$\mathbf{P}_{2}, \dots \mathbf{P}_{N} \in \mathbb{R}_{y}^{N-1}$$
 (linearly independent)
s.t. $K + \mathbf{p}_{i} = K$ $(i = 2, \dots, N)$

Under what conditions can the front pass through the wall?

Some numerical simulations

Wall with wider holes

Simulation by Steffen Plunder (Kyoto University)

Wall with narrower holes

PropagationBlockingThe front has surface energy.surface tension

More rigorous approach: sharp-interface limit

2. Formulation of the problem

Planar-front like solution

$$(E) \begin{cases} u_t = \Delta u + f(u), & x \in \Omega := \mathbb{R}^N \setminus K \\ \frac{\partial u}{\partial \nu} = 0, & x \in \partial \Omega. \end{cases}$$
 Is there a planar-front like solution that approaches the obstacle K ?

Theorem 1. Assume $K \subset \{x \in \mathbb{R}^N \mid x_1 \ge 0\}$, There exists a <u>unique</u> entire solution \bar{u} of (E) satisfying $0 < \bar{u} < 1$ ($x \in \overline{\Omega}, t \in \mathbb{R}$) and $\lim_{t \to -\infty} \sup_{x \in \Omega} |\bar{u}(t, x) - \phi(x_1 - ct)| = 0.$ This solution satisfies $\bar{u}_t > 0$ for all $x \in \overline{\Omega}, t \in \mathbb{R}$.

Since \bar{u} is monotone in t, the following limit exists.

$$\bar{v}(x) := \lim_{t \to +\infty} \bar{u}(t, x) \quad (\text{limit profile})$$

$$\begin{cases} \Delta v + f(v) = 0, \quad x \in \Omega := \mathbb{R}^N \setminus K \\ \frac{\partial v}{\partial \nu} = 0, \quad x \in \partial \Omega. \end{cases}$$

Limit profile

Q

Find conditions for propagation and those for blocking.

Dichotomy theorem

The limit profile converges either to 1 or to 0, uniformly regardlessof the choice of K.Method: Liouville type lemma

The family of <u>blocking walls form a closed set</u>, while that of non-blocking walls form an open set.

Sufficient conditions for blocking.

Blocking occurs if the holes are narrow enough.

Method: variational arguments

Sufficient conditions for propagation.

- (a) Wall with large holes;
- (b) Small capacity wall;
- (c) Parallel blade wall.

3. Propagation / blocking dichotomy

Classification of solution behaviors beyond the wall.

Propagation / blocking dichotomy

Theorem 2 (Dichotomy). One of the following alternatives holds: $\lim_{x_1 \to +\infty} \bar{v}(x_1, y) = 1 \quad (\text{propagation}), \quad \lim_{x_1 \to +\infty} \bar{v}(x_1, y) = 0 \quad (\text{blocking})$ The above convergence is uniform with respect to $y \in \mathbb{R}^{N-1}$ and K so long as $K \subset \{x \in \mathbb{R}^N \mid 0 \leq x_1 \leq M\}.$

In particular, there is no blocking profile that converges to 0 too slowly.

Liouville type lemma

[Y. Liu, K. Wang, J. Wei, K. Wu: Proc. AMS, to appear]

Lemma 1.1 (Liouville type lemma). Let $g : \mathbb{R} \to \mathbb{R}$ be a C^2 function whose zeros are all isolated, and let v(x) be a bounded solution of

$$\Delta v + g(v) = 0 \quad in \ \mathbb{R}^N$$

that is <u>stable</u>. Assume that the one-dimensional equation w'' + g(w) = 0does not have a nonconstant stable solution. Then v is a constant.

Definition of "stability"

$$\begin{cases} -\Delta \phi - g'(v)\phi = \lambda_R \phi, \ \phi > 0 & \text{in } B_R, \\ \phi = 0 & \text{on } \partial B_R \end{cases}$$

 $\lambda_R \ge 0$ for all R > 0.

Corollary 4. Let v be a bounded solution of $\Delta v + f(v) = 0$ in \mathbb{R}^N that is stable. Then either v = 0 or v = 1.

Outline of the proof of Theorem 2

Suppose that there exists a sequence of walls K_j (j = 1, 2, 3, ...) such that the limit profiles v_j for K_j do not converge to 1 nor 0 fast enough.

By shifting v_j and taking the limit, we obtain a function v_{∞} on \mathbb{R}^N s.t. $0 < v_{\infty}(x) < 1$ on \mathbb{R}^N , v_{∞} is stable.

But this contradicts the Liouville type lemma.

Remark

Stability is preserved by spatial shifts and by limiting procedures.

Propagation / blocking dichotomy

Theorem 2 (Dichotomy). One of the following alternatives holds: $\lim_{x_1 \to +\infty} \bar{v}(x_1, y) = 1 \quad (\text{propagation}), \quad \lim_{x_1 \to +\infty} \bar{v}(x_1, y) = 0 \quad (\text{blocking})$ The above convergence is uniform with respect to $y \in \mathbb{R}^{N-1}$ and K so long as $K \subset \{x \in \mathbb{R}^N \mid 0 \le x_1 \le M\}.$

Corollary 3. Let K_1, K_2, K_3, \ldots be a sequence of walls satisfying $K_j \subset \{x \in \mathbb{R}^N \mid 0 \le x_1 \le M\} \quad (j = 1, 2, 3, \ldots)$

and converging to a wall K_{∞} in the Hausdorff distance. If blocking occurs for every K_j (j = 1, 2, 3, ...) then the same holds for K_{∞} .

$$\bar{v}_j \ (j = 1, 2, 3, \ldots)$$
 limit profile of K_j $\bar{v}_j \to \bar{v}_\infty$
 \downarrow $\lim_{x_1 \to +\infty} \bar{v}_\infty(x_1, y) = 0$

4. Conditions for blocking

Geometric obstruction

<u>Theorem 5.</u> Assume either of the following:
(K1) *K* is <u>periodic in *y*</u>.
(K2) The holes are <u>localized</u> in a bounded region.

If the holes are too small, then blocking occurs.

<u>Theorem 5.</u> Assume either of the following:

(K1) K is periodic in y.

(K2) The holes are <u>localized</u> in a bounded region.

If the holes are too small, then blocking occurs.

<u>Remark</u>

- The assumptions (K1) and (K2) allow us to define an energy functional around the holes. The problem is open without these conditions.
- Whether blocking occurs or not does not simply depend on the size of the holes. As shown in [BBC 2016], blocking occurs if the opening angle is large, but not if the opening angle is small.

<u>Theorem 5.</u> Assume either of the following:

(K1) K is <u>periodic in y</u>.

(K2) The holes are <u>localized</u> in a bounded region.

If the holes are too small, then blocking occurs.

One-way blocking

(A) Narrow exit and <u>large</u> opening angles

(B) Narrow entrance but wide exit, and <u>small opening angles</u>.

5. Sufficient conditions for propagation

Three types of walls

Walls that allow propagation

(a) Wall with large holes

A ball of a critical radius R_0 can pass through one of the holes, where R_0 is to be specified later.

(b) Small capacity wall

K is <u>close to</u> a set of capacity 0 in Hausdorff distance.

(K_{ε} is in the ε neighborhood of a zero capacity set K_0 .)

(c) Parallel-blade wall

K consists of thin panels parallel to the x_1 axis. More precisely, K_0 is a locally finite union of hypersurfaces parallel to the x_1 axis and let K_{ε} converge to K_0 in a certain sense.

Walls that allow propagation

(a) Wall with large holes

A ball of a critical radius R_0 can pass through one of the holes, where R_0 is to be specified later. <u>Method</u>: comparison principle and sweeping argument

(b) Small capacity wall

K is <u>close to</u> a set of capacity 0 in Hausdorff distance.

<u>Method</u>: limiting argument, removal singularity, and dichotomy theorem (Cor.2).

(c) Parallel-blade wall

K consists of thin panels parallel to the x_1 axis.

Method: sweeping method by "<u>quasi-subsolutions</u>" and relative Poincaré inequality

1. Wall with large holes

<u>Theorem 6.</u> If a ball of radius R_0 can pass through one of the holes of the wall without touching K, then propagation occurs.

Let $\Psi(x) \ge 0$ be a compactly supported radial subsolution:

$$\Delta \Psi + f(\Psi) = 0 \ (|x| < R_0), \ \Psi(x) = 0 \ (|x| \ge R_0)$$

satisfying $\alpha < \Psi(0) = \max \Psi < 1$ (Aronson-Weinberger '78).

Strong maximum principle + sweeping argument Move the position of P continuously without hitting *K*

2. Small capacity wall

Theorem 7 (Small-capacity wall). Let K^{ε} ($0 < \varepsilon \leq \varepsilon_0$) be a family of walls that is periodic in $y \in \mathbb{R}^{N-1}$ and satisfies $K^{\varepsilon} \subset \{x \in \mathbb{R}^N \mid 0 \leq x_1 \leq M\}, \quad \limsup_{\varepsilon \to 0} K^{\varepsilon} \subset K_0 \cup K_1,$ where K_0 is a closed set of capacity 0, K_1 is a wall with large holes or $K_1 = \emptyset$. Then for all sufficiently small $\varepsilon > 0$, propagation occurs for K^{ε} .

(a) Wall with a large hole.

(b) Wall with a large hole that is filled with debris of small capacity.

2. Small capacity wall

Theorem 7 (Small-capacity wall). Let K^{ε} ($0 < \varepsilon \leq \varepsilon_0$) be a family of walls that is periodic in $y \in \mathbb{R}^{N-1}$ and satisfies $K^{\varepsilon} \subset \{x \in \mathbb{R}^N \mid 0 \leq x_1 \leq M\}, \quad \limsup_{\varepsilon \to 0} K^{\varepsilon} \subset K_0 \cup K_1,$ where K_0 is a closed set of capacity 0, K_1 is a wall with large holes or $K_1 = \emptyset$. Then for all sufficiently small $\varepsilon > 0$, propagation occurs for K^{ε} .

Sufficient conditions for capacity 0

- Hausdorff dimension of $K_0 < N 2$.
- (N-2) dimensional rectifiable manifold.

Examples of \underline{K}_0

- Discrete set $(N \ge 2) \rightarrow$ "Debris wall"
- Locally finite union of curves (N = 3) → "Filament wall"

2. Small capacity wall

Interpretation of the result

Since the front has positive thickness, it is not very sensitive to debris of small capacity.

3. Parallel-blade wall

is <u>periodic</u> in and consists of thin panels <u>parallel to</u> the x_1 axis.

More precisely, lies in the neighborhood of which is an N-1 dimensional set parallel to \underline{x}_1 axis.

$$\int_{\partial K^{\varepsilon} \cap \Delta_{\mathcal{P}}} |\nu \cdot \boldsymbol{e}_1| \, dS_x \leq \varepsilon_1$$

In 3D, a honeycomb wall is also an example.

Note: K_0 has positive capacity as codim $K_0 = 1$

3. Parallel-blade wall

is <u>periodic</u> in and consists of thin panels <u>parallel to</u> the x_1 axis.

More precisely, lies in the neighborhood of which is an N-1 dimensional set parallel to \underline{x}_1 axis.

Theorem 8 (Parallel-blade wall). Let K^{ε} $(0 < \varepsilon \leq \varepsilon_0)$ be a family of \mathcal{P} -periodic parallel-blade walls converging to $K_0 \subset [0, M] \times \Sigma$ as $\varepsilon \to 0$, Then for all sufficiently small $\varepsilon > 0$, propagation occurs for K^{ε} .

Method: sweeping method by "<u>quasi-subsolutions</u>" and relative Poincaré inequality **Theorem 8** (Parallel-blade wall). Let K^{ε} $(0 < \varepsilon \leq \varepsilon_0)$ be a family of \mathcal{P} -periodic parallel-blade walls converging to $K_0 \subset [0, M] \times \Sigma$ as $\varepsilon \to 0$, Then for all sufficiently small $\varepsilon > 0$, propagation occurs for K^{ε} .

<u>Strategy of proof</u>: Sweeping argument by quasi-subsolutions.

Relative Poincaré inequality

G. Buttazzo and B. Velichkov, *The spectral drop problem*, Contemporary Math. **666** (2016), pp. 111–135.

Proposition 1.3. Let $\widehat{\Omega}$ be a domain in \mathbb{R}^N and let η_0 be a real number with $0 < \eta_0 < |\widehat{\Omega}|$. Then there exists a constant C > 0 depending only on $\widehat{\Omega}$ and η_0 such that, for any open set $D \subset \widehat{\Omega}$ satisfying $|D| \leq \eta_0$ and any $w \in H^1(\widehat{\Omega}) \cap C(\widehat{\Omega})$ such that w = 0 in $\widehat{\Omega} \setminus D$, the following holds:

$$\int_D |\nabla w|^2 dx \ge C |D|^{-\frac{2}{N}} \int_D w^2 dx.$$

Summary:

We discussed whether or not a planar bistable front can propagate through a perforated wall.

1. <u>Classification of general behavior</u>:

Dichotomy theorem (via Liouville type lemma) Cor. the limit of blocking walls is again blocking.

- 2. <u>A sufficient condition for blocking</u>: (narrow holes)Method: construction of an upper barrier via a variational argument
- 3. <u>Three sufficient conditions for propagation</u>:

(a) large-hole walls (b) small-capacity walls (c) parallel-blade walls.

Method: (a) sweeping method, (b) removable singularity theory + dichotomy thm, (c) sweeping by <u>quasi-subsolutions</u>.

Open questions:

1. <u>Tilted thin panels</u>: What if the panels are tilted ?

Proof of blocking for non-periodic walls
 Is there a way to apply variational arguments?

3. <u>Homogenization problem</u>:

What if the size of the holes and the distance between adjacent holes both go to zero simultaneously?

Thank you!