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Axons

It was discovered Luigi Galvani in 1791-1797 and further studied
by Alessandro Volta (who developed the earliest-known electric
battery to study animal electricity) that signals between the central
nervous system and various organs are transmitted by electric
impulses (called pulses) propagating along nerve axons



Action potential
In 1952, A. Hodgkin and A. Huxley established that the pulses are due to

shifting potential differences created by sodium, potassium, and chlorine

(Na+, K+, C−) and other ions moving across the axon membrane

This results in a voltage differ. pulse (action potential) propagating along axon



Sodium-potassium pump

The separation of charge creates a potential difference of 70 to 90
mV across the only 8-nm-thick cell membrane and the resulting
electric field (E = V/d) is huge (on the order of 11 MV/m).

25% of the energy used by cells goes toward creating and
maintaining these potentials.

This sodium-potassium pump is an example of active transport, in
which cell energy is used to move ions across membranes against
diffusion gradients and the Coulomb force.



Hodgkin-Huxley system
Hodgkin and Huxley modelled the above process by the system
describing the dynamics of the action potential v and the gating
rates m, n, h (Nobel Prize, 1963):

Cm∂tv = (R/r)∂2
xv − gNam

3h(v − ENa)− . . .
∂tm = Θ(T )[αm(v)(1−m)− βm(v)m],

∂th = Θ(T )[αh(v)(1− h)− βh(v)h],

∂tn = Θ(T )[αn(v)(1− n)− βn(v)n].

(HH)

Here R is the axon ‘radius’, r/2 is the resistance per unit length,

Cm is the membrane capacitance, Θ(T ) = 3
T−6.3

10 .

Here an axon is modelled by a straight line without an internal
geometric structure.

Since the Hodgkin-Huxley papers, most of the work is done in the
‘clumped’ case where the diffusion terms are dropped resulting in
the system of ODEs.



FitzHugh-Nagumo system
The FitzHugh-Nagumo system (FHN) modelling the propagation
of electric impulses in nerve axons, is a simplified version of the
Hodgkin-Huxley system. It is given as

∂tu1 = ∂2
xu1 + f (u1)− u2,

∂tu2 = ε(u1 − γu2) ,
(FHN)

where u1 is the electrical potential across the axon membrane, and
u2 combines the K+ and Na+ channel activation and inactivation
gating rates lumped into a single variable.

Furthermore, the parameters ε and γ are positive and small and

f (u1) := −u1(u1 − α)(u1 − 1), 0 < α <
1

2
.

(u1 and u2 are fast and slow variables, respectively.)

Here, an axon is again modelled by a straight line.



Cylindrical FitzHugh-Nagumo system

To take into account the geometry of the axon, namely, a
cylindrical cable-like fibre, with electrical signals propagating on its
surface, we model it by a cylindrical surface, S, and extend FHN to
S as

∂tu1 = ∆Su1 + f (u1)− u2 ,

∂tu2 = ε(u1 − γu2) ,
(FHN-S)

where ∆S denotes the Laplace-Beltrami operator on S and ε, γ
and f are the same as above, e.g.

f (u1) := −u1(u1 − α)(u1 − 1), 0 < α <
1

2
.

We call FHN-S the cylindrical FitzHugh-Nagumo system. Taking
formally S = R in FHN-S gives FHN.



Radial (1D) pulses
A pulse is a solution to FHN which is a function of a single
variable, z = x − ct, c > 0, vanishing at infinity (trav. wave).
If 0 < α < 1

2 , 0 < γ < m(α), and ε > 0 is sufficiently small, then
FHN has two different pulse solutions: the fast pulse with speed

cf (ε) =

√
2

2
(1− 2α) + o(ε),
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point the higher and lower pulses coalesce around
30 ◦C, consistent with a → 0 and in parallel to the
Hodgkin–Huxley behavior shown in Fig. 1. Finally,
these quantitative results indicate that, while the
Hodgkin–Huxley pulse speed and pulse front speed
as determined by the V–m model are very close in
general, there is a large discrepancy between the
FitzHugh–Nagumo pulse speed and the pulse front
speed when b = 0. For example, from Table 2, at
T = 18.5 ◦C the pulse front speed (1937 cm/sec)
agrees with the pulse speed (1873 cm/sec) within
a few percent. From Table 3 this pulse speed
occurs for the FitzHugh–Nagumo equations when
a = 0.1490 which implies a pulse front speed
[(4904(1 − 2a)/

√
2)] of 2432 cm/sec, a discrepancy

of 25%. The essential commonality in speed of pulse
front and pulse, which is characteristic of Hodgkin–
Huxley dynamics, is lost in the FitzHugh–Nagumo
model.

5. Discussion

The simplifications introduced in the passage
from the sophisticated Hodgkin–Huxley model to
the FitzHugh–Nagumo model necessarily exacts
a price. That price is primarily in the magni-
tude and location of the pulse minimum. Figure 7
shows a comparison of Hodgkin–Huxley pulse at

Fig. 7. Comparison of the pulse shapes derived from
Hodgkin–Huxley and FitzHugh–Nagumo equations. Pulse
solution of the Hodgkin–Huxley Eq. (3) (red curve) with solu-
tion of the FitzHugh–Nagumo Eq. (4) (black curve) for T =
18.5 ◦C. In both cases, the pulse speed is 1873 cm/sec and
the pulse maximum is 90.6 mV. From Table 3 the FitzHugh–
Nagumo parameters for this pulse are: [a = 0.1490, b =
0.006763]. The minimum of the FitzHugh–Nagumo pulse
[−25.3 mV] is sharply lower than the Hodgkin–Huxley pulse
[−9.68 mV].

T = 18.5 ◦C along with the parallel FitzHugh–
Nagumo pulse a = 0.1490 and b = 0.006763. It
is to be observed that the pulse minimum predicted
by the FitzHugh–Nagumo equations is substantially
lower than that of the Hodgkin–Huxley equations.
This discrepancy is consistent with the fact that
the dynamics of the pulse back was neglected in
the association of the Hodgkin–Huxley with the
FitzHugh–Nagumo formulation through the two-
dimensional V–m model. If one formally removes
the restriction that ε = 0 of Eq. (2b) the “equal
areas property” of the FitzHugh–Nagumo equa-
tion is no longer present. However, calculations
show that releasing this restriction is insufficient
to remove the discrepancy. Consistent with the
“Reduced V–m Model” of Eqs. (13a) and (13b), the
implication is that the FitzHugh–Nagumo equation
models essentially the dynamics of a single gate (the
sodium gate) which is sufficient to account closely
for the pulse speed. The back of the pulse, implicat-
ing the second potassium gate as it does, is quali-
tatively accounted by the introduction of a single
recovery variable Y characterizing the FitzHugh–
Nagumo equations. This is consistent with the
observed relatively narrow width and steeper slope
of the FitzHugh–Nagumo pulse compared to the
Hodgkin–Huxley pulse, which occur because repo-
larization is more rapid in the former case [Hinch,
2005].

In summary, upon comparison, the Hodgkin–
Huxley and FitzHugh–Nagumo models share the
commonality of high and low pulse solutions as
observed already by FitzHugh [1969]. In the present
work identification with the Hodgkin–Huxley pulse
speed and pulse peak were obtained from a con-
traction to a two-dimensional V–m dynamics of
Eqs. (13a) and (13b). This contraction, with scal-
ing, allowed connection with the FitzHugh–Nagumo
equations. Upon construction of the state plot of
Fig. (5) based upon the approximate analytic solu-
tions Eqs. (9), (10a)–(10d) one could encapsulate
the Hodgkin–Huxley dynamics as a ridge. Other
conductance models if similarly reducible could find
a path on this plot to provide a way of compar-
ing different dynamical formulations. What has not
been done yet is to derive the FitzHugh–Nagumo
equations from the Hodgkin–Huxley equations and
it is probably impossible to do so. As has been
pointed out by Muratov [2000] the Hodgkin–Huxley
pulse front solutions, since they necessarily involve
an interacting v and m kinetics are not reducible
to phase plane analysis. The reason is shown by
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Phillipson and Schuster, A comparative study of the Hodgkin-
Huxley and Fitzhugh-Nagumo models of neuron pulse 
propagation. Intl J Bifurcation Chaos, (2005).

and a slow pulse with speed cs(ε) = O(
√
ε).

The fast pulse is stable (in 1D), while the slow pulse is unstable.



Pulses

Consider FHN-S on the straight cylinder, SR := R× RS1, of a
constant radius R centered about the x-axis in R3, parametrized as

SR =
{

(x ,R cos θ,R sin θ) ∈ R3
∣∣ x ∈ R, θ ∈ [0, 2π)

}
, (1)

with the Riemannian area element is R dθdx .

Clearly, FHN-S on S = SR is invariant under translations. If
u(x , θ, t) is a solution, then so are its translates

uh(x , θ, t) := u(x − h, θ, t) , h ∈ R.

Each pulse Φ on S = R defines a smooth axisymmetric traveling
wave solution of FHN-S on SR :

u(x , θ, t) = Φ(x − ct).

It is a consequence of translation invariance that all translates Φh

of Φ are pulses of the same speed c .



Manifold of pulses (with A. B. and A. T.)
The translates, Φh(x) := Φ(x − h), of the pulse Φ(x) form a
one-dimensional manifold of pulses

M := {Φh | h ∈ R} . (2)

Let Hk,m be anisotropic Sobolev space on S with the norm ‖ · ‖k,m and

let dist(v ,M) := infh ‖v−Φh‖2,1 = distance of v from M.

Our first result shows that for a straight cylinder there is a tubular
neighborhood W = {w ∈ H2,1 | dist(w ,M) < η} of M for which

dist(u(t),M) ≤ C1e
−νt dist(u0,M) (Stab-Cyl)

for all solutions, u(t), with initial values, u0, in W.

As t →∞, each solution converges to a particular traveling pulse

Φ(x − ct − h∗).



Near-pulse solutions (with A. B. and A. T.)

Consider FHN-S on a cylinder Sρ of variable radius, i.e. Sρ is
defined as a graph over the straight cylinder R× S1 (warped cyl.):

Sρ :=
{

(x , ρ(x , ω)) ∈ R3 : x ∈ R, ω ∈ S1
}
.

When ρ is non-constant, FHN-S is not expected to have pulse
solutions. However, there are near-pulse solutions:

Theorem (Near-pulse solutions, warped cylinder)

There are a constant δ∗ > 0 and a tubular neighborhood W of M
s.t. if δ := R−1‖ρ− R‖C2 ≤ δ∗, then ∀u0 ∈ W, ∃ the unique mild
solution u(t) with i.c. u0 and u(t) satisfies

dist(u(t),M) ≤ Me−ξt dist(u0,M) + M ′δ , (3)

where, recall, M is the manifold of pulses M := {Φh | h ∈ R}.



Dimensional reduction (with G. K. and K. T.)
Consider FHN-S with ρ ∈ C 2, bounded (and radially symmetric) with

‖∂xρ‖L∞ <∞. Let f̄ (x) := 1
2π

∫ 2π

0
f (x , θ)dθ. We compare FHN-S with

∂tw1 = ∆rad
ρ w1 + f (w1) − w2 ,

∂tw2 = ε (w1 − γ w2) ,
(4)

where ∆rad
ρ = 1√

g ∂x
ρ̄2
√
g ∂x ,

√
g = ρ̄

√
1 + ρ̄2

x . We have:

Theorem (1D effective approximation)

There exist r∗ and δ∗ s.t., for any 0 < ρ ≤ r∗, the strong solution
u(t) of FHN-S in H1,0, with an i.c. u0 obeying ‖u0 − ū0‖1,0 ≤ δ∗,
and a strong sol. w to (4) in H1,0

rad , with δ := ‖ū0 −w0‖1,0 � 1,
satisfy

‖u(t)−w(t)‖1,0 ≤ e−κt ‖u0 −w0‖1,0 + 2C δ, (5)

for some C > 0 independent of ε and the existence time interval
and κ ∝ γ

2 ε.



1st step: Spontaneous symmetrization [KTS]

Recall f̄ (x) := 1
2π

∫ 2π
0 f (x , θ)dθ. In the first step, we prove

Theorem (Radial collapse theorem (RCT))

Under the conditions of the previous theorem, any strong solution
u(t) to FHN-S in H1,0 satisfies the estimate

‖u(t)− ū(t)‖1,0 ≤ C e−λ t ‖u0 − ū0‖1,0, (6)

where λ := γ
2 ε and C > 0 is a const. independent of ε and the

existence time interval.

This result shows that the signal intensity is close to its sectional
average which is measured in experiments.



Idea of proof of RCT, general approach

Let M be a manifold of radial functions from H1,0. Look for a
solution near M as a point χ ∈M plus a transversal fluctuation:

u = χ+ v , χ ∈M, v ⊥M. (7)

Plugging (7) into FHN-S and projecting onto TχM and T⊥χM

=⇒ ∂tχ = f (χ, v) and ∂tv = Lv + N(v , χ) .

Here L is the linearization of FHN-S about the approximate
solution χ and N(v , χ) is the nonlinear part.

To estimate the fluctuation v(t) ≡ u(t)− χ(t), we use spectral
gap estimates for the non self-adjoint operator-matrix L and differ.
ineq. for quadratic functionals to obtain

‖v(t)‖1,0 ≤ C e−λ t ‖v0‖1,0. 2



Proving effective approx. thm.: Guided stability argum.
By the radial collapse theorem (RCT), we have the estimate

‖u(t)− ū(t)‖1,0 ≤ C e−λ t ‖u0 −w0‖1,0, (8)

where λ := γ
2 ε, provided w0 is s.t. ‖u0 −w0‖1,0 ≤ ‖u0 − ū0‖1,0.

Next, similarly to RCT, we prove the effective approx. estimate

‖ū(t)−w(t)‖1,0 ≤ C eµ t δ, (9)

where δ := ‖ū0 −w0‖1,0. Choose τ so that C e−λ τ = 1/2.



Proving effective approx. thm.: Guided stability argum.
By the radial collapse theorem, we have the estimate

‖u(t)− ū(t)‖1,0 ≤ C ′ e−λ t ‖u0 −w0‖1,0, (10)

where λ := γ
2 ε, provided w0 is s.t. ‖u0 −w0‖1,0 ≤ ‖u0 − ū0‖1,0.

Next, similarly to the radial collapse theorem, we prove

‖ū(t)−w(t)‖1,0 ≤ C ′′ eµ t δ, (11)

where δ := ‖ū0 −w0‖1,0. Choose τ so that C ′ e−λ τ = 1/2.

Let C := C ′′ eµ τ . Then, estimates (10) and (11) yield

‖u(τ)−w(τ)‖1,0 ≤ 2−1 ‖u0 −w0‖1,0 + C δ. (12)

Iterating (12), using the semi-group property of the flow, yields

‖u(kτ)−w(kτ)‖1,0 ≤ 2−k ‖u0 −w0‖1,0 + 2C δ.

Interpolating this, we obtain

‖u(t)−w(t)‖1,0 ≤ e−κt ‖u0 −w0‖1,0 + 2C δ. (13)



Summary

We discussed

I An extension of the FitzHugh-Nagumo system (FHN) to
warped cylindrical surfaces

I Existence and stability of pulse-like solutions on surfaces of
warped cylinders ([BST]: nearly radial pulses surrounded by
small fluctuations propagate along the cylindrical axis, as in
the case with real axons)

I Approximation of solutions of the 2D surface system by
solutions of an effective 1D system ([KTS]: any strong
solution u(t) of FHN-S can be approximated by a strong
solution w(t) of an effective system in 1D)



Previous works
I There is a huge computational literature on the classical 1D

FHN system, see
Cebrián-Lacasa et al, Six decades of the FitzHugh–Nagumo
model, Phys Rep 1096 (2024). (323 references and counting)

There is also a rich mathematical literature for this system,
see KTS, J. Nonlin. Scie. 2025 for a review and references.

For higher dimensions, Tsujikawa, Nagai, Mimura, Kobayashi
and Ikeda considered the FHN in Rn = Rn−1 × R with
periodic conditions in Rn−1 and proved stability of fast pulse
solutions propagating along the axis R = (Rn−1)⊥.

I Similar equations on compact surfaces in R3 appear in cellular
electrophysiology, with existence theory developed in
Franzone, Savare, Amar, Andreucci, Bisegna, Gianni,
Veneroni, Matano, Mori and others.



Open problems

- Extension of the result above to a wider class of warped cylinders.

- Derivation of dynamical equations for the pulse centre.

- Adiabatic approximation and the derivation of FHN.

- Dynamic geometry coupled to the electric potential u1.

- Stochastic FHN (internal and external noise, random geometry,
random firing).

- Derivation of the FHN system (heuristic and microscopic).

- Relation to quantum noise! (Comput. Structural Biotech. J. 30 (2025))

- Hodgkin-Huxley system



Thank-you for your attention


