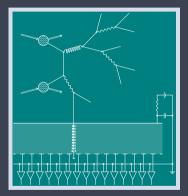
Neutron Monitors at Jungfraujoch

NMDB Meeting 2025 National and Kapodistrian University of Athens

Lukas Bäni^{1, 2} Rolf Bütikofer¹ Erwin Flückiger¹

¹Physics Institute, University of Bern, Switzerland ²High Altitude Research Stations Jungfraujoch and Gornergrat, Bern, Switzerland

21 March 2025



Detectors at Jungfrauj

Effects on count rate

» My personal background

- * High energy physics
 - Top quark physics with proton-proton collision data from the CMS detector at the LHC (CERN)
 - $\ast~$ Cross section measurements at 7 TeV and 8 TeV
 - * Diamond as a material for position sensitive detectors
 - * Study of detector characteristics with irradiation
 - Measurement of uniformity of diamond material with irradiation
- * Since 2022: employed by research station Jungfraujoch
- Since spring 2024: took over neutron monitor duties from Rolf Bütikofer

Detectors at Jungfraujo

Effects on count rate

» Research Station Jungfraujoch

- * Located in Bernese Alps in Switzerland
- * Altitude: 3450 m above sea level
- * Accessible by train (\sim 2.5 h from Bern)
- * Permanently staffed

Wikipedia 2010

Detectors at Jungfraujoch

Effects on count rate

» Completion of Jungfrau Railway and Cosmic Ray Research at Jungfraujoch

- 1912: completion of Jungfrau Railway to Jungfraujoch
- Cosmic ray research since the opening of the railway
- The construction of the research station and Sphinx observatory made permanent instruments and measurements possible.
 → neutron monitors

Detectors at Jungfraujoch ●○○○○○

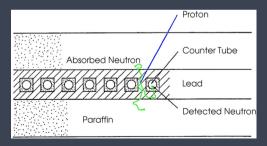
Effects on count rate

Summary O

» Neutron monitors at Jungfraujoch

Detectors at Jungfraujoch

» IGY neutron monitor – JUNG



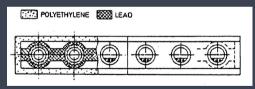
JUNG NM on Sphinx terrace

Effects on count rate

* In operation since 1958

- Built for continuous measurement of cosmic ray intensity
- * 18 BF_3 counter tubes (N. Wood) in 3 sections

Detectors at Jungfraujoch


» NM64 neutron monitor – JUNG1

JUNG1 NM on top of research station

Effects on count rat

- \ast In operation since 1985
- * 3 BF₃ counter tubes (Chalk River)
- $\ast\,$ JUNG1 has ${\sim}3\text{-times}$ higher count rate than JUNG
 - \rightarrow better statistics than JUNG

NM64 (Carmichael 1968)

Detectors at Jungfraujocl ○○○●○○

Effects on count rate

» JUNG and JUNG1 at Jungfraujoch

Housing of JUNG

«Chalet» of JUNG1

- Housing of both monitors is designed to withstand the harsh weather conditions
- * Precision barometer (±0.2 hPa) at each monitor
- * New readout electronics by Uni Kiel introduced in 2020

Readout electronic (Böttcher et al. 2022)

L Bäni

NMDB 2025

Effects on count rate

» Available webcams to monitor environment of JUNG and JUNG1

- * https://network.switch.ch/pub/cam/
- * https://www.jungfrau.ch/webcams/top-of-europe-jungfraujoch/

Detectors at Jungfraujoch ○○○○○●

Effects on count rate

» Environment of JUNG1

26 Jan 2019

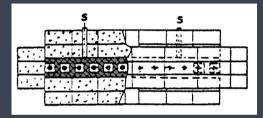
26 Sep 2018

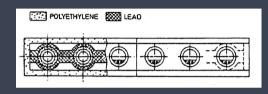
Detectors at Jungfrau

Effects on count rate

Count rate of JUNG, JUNG1, and BERN

Comparison of the measurements of the two Jungfraujoch monitors in 2024


- * Forbush decreases
- * Wind effects
- Seasonal variation of JUNG1 due to snow coverage
 - * Snow from JUNG is removed at least once per day
 - On top and behind JUNG1 housing snow accumulated and melts in spring time


L Bäni

NMDB 2025

Effects on count rate ○●

» Effects on count rate of IGY vs. NM64 by environmental changes

NM64 (Carmichael 1968)

IGY (Simpson 1957)

- * Reflector of the IGY is larger than that of the NM64 (by a factor of \sim 4)
- * Therefore, the NM64 is more sensitive to lower energetic neutrons which are produced in the environment of the detector (albedo neutrons) than the IGY.
- * As a consequence, changes of material around the detector of the NM64, as snow accumulation or snow melting, have a considerable effect on the count rate of the NM64.

Summary

Effects on count rate

» Summary and outlook

- st Longterm data set available (on NMDB) with almost no interruptions
- * Jungfraujoch 1-minute data are online in almost real-time
- * Monitors at Jungfraujoch are sometimes affected by snow accumulation
 - * JUNG1 (NM64) shows clear seasonal variations \rightarrow not suited for long-term studies
 - *~ JUNG (IGY) housing exposed to wind \rightarrow snow strongly shifted by wind and only small snow layer
 - $\ast~$ Snow from IGY roof is removed at least once per day
- * New readout electronics installed at both monitors
- * JUNG and JUNG1 will be kept in operation jointly by HFSJG and University of Bern Responsible station manager: Lukas Bäni (lukas.baeni@unibe.ch)

References

- ¹S. I. Böttcher, C. T. Steigies and R. Bütikofer, «NMRENA», 23rd Feb. 2022.
- ²H. Carmichael, Cosmic Rays (Instruments), Annals of the IQSY **1**, edited by C. M. Minnis, 178–197 (1968).
- ³J. Simpson, Annals of The International Geophysical Year **4**, 351–373 (1957).
- ⁴Wikipedia, *Physical location map europe*, (Mar. 2010) https://commons.wikimedia.org/wiki/File: Europe_relief_laea_location_map.jpg(visited on 07/10/2024).