Atiyah classes of homotopy modules

Panagiotis Batakidis

Aristotle University of Thessaloniki, Greece

PCG 2024

Panagiotis Batakidis **[Atiyah classes of homotopy modules](#page-39-0)**

o Introduction: Words in the title

- Differential Graded Geometry: A concise description of several different objects
- **Ativah classes:** Obstructions to the existence of certain structures in Geometry and Lie Theory
- Representations up to homotopy: Higher Curvatures and examples

同 ▶ ィヨ ▶ ィヨ

つへへ

- **a Introduction:** Words in the title
- Differential Graded Geometry: A concise description of several different objects
- **Ativah classes:** Obstructions to the existence of certain structures in Geometry and Lie Theory
- Representations up to homotopy: Higher Curvatures and examples

何 ト ィヨ ト ィヨ ト

- **.** Introduction: Words in the title
- **Differential Graded Geometry:** A concise description of several different objects
- **Ativah classes:** Obstructions to the existence of certain structures in Geometry and Lie Theory
- Representations up to homotopy: Higher Curvatures and examples

- **.** Introduction: Words in the title
- **Differential Graded Geometry:** A concise description of several different objects
- **Ativah classes:** Obstructions to the existence of certain structures in Geometry and Lie Theory
- Representations up to homotopy: Higher Curvatures and examples

Evolution of the class

• Origin: Atiyah (1957) constructed the Atiyah class to characterize the obstrcution to the existence of holomorphic connections on a holomorphic vector bundle.

• Motivation for studying Atiyah classes

- Kontsevich (1997): relation between Ativah class in complex geometry and Duflo Isomorphism in Lie theory (see the book by Calaque-Rossi)
- Kapranov (1997): Atiyah class of a Kähler manifold induces an L_{∞} – structure, important for Rozansky-Witten invariants

• Beyond complex geometry:

- Chen-Stiénon-Xu (2012): extended the theory of Atiyah classes from complex geometry to Lie (algebroid) pairs
- Mehta-Stiénon-Xu (2015): extended the theory of Atiyah classes from complex geometry to dg Lie algebroids

 \sqrt{m}) \sqrt{m}) \sqrt{m})

Question What is the Atiyah class of representations up to homotopy and its relation to the Atiyah class of dg Lie algebroids? **Answers**

- Liao-Stiénon-Xu (2016), Batakidis-Voglaire (2016): The Atiyah class of the associated Fedosov dg Lie algebroid can be identified with the Atiyah class of a given Lie pair
- **•** Liao (2022):

The Atiyah class of the associated pullback dg Lie algebroid can be identified with the Atiyah class of a given Lie pair

Batakidis-Lavau (2024): Definition of the Atiyah class for arbitrary representation up to homotopy and a result that extends the previous answers.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

Lie pair $(L, A) =$ Lie algebroid $L \rightarrow M +$ Lie subalgebroid $A \rightarrow M$.

- **1** Given a Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$, $(\mathfrak{g}, \mathfrak{h})$ is a Lie pair over $M = \{pt\}.$
- **2** If F is a regular foliation on M, (TM, TF) is a Lie pair over M.
- **3** If $\mathcal{F}_1, \mathcal{F}_2$ are transversal foliations on M, then $T\mathcal{F}_1 \bowtie T\mathcal{F}_2 \simeq TM$ is a matched pair.
- \bigcirc If (P, π) is a Poisson G− space (Poisson P w/ a Poisson G− action), then $A = (T^*P)_{\pi}$ $B = P \times \mathfrak{g}$ is a matched pair.
- \bullet If X is complex manifold then $(\mathit{T}X \otimes \mathbb{C},\mathcal{T}^{0,1}X)$ is a Lie pair and $A = \mathcal{T}^{0,1}X, B = \mathcal{T}^{1,0}X$ is a matched pair.

何 ▶ (三) (三)

つくい

Lie pair $(L, A) =$ Lie algebroid $L \rightarrow M +$ Lie subalgebroid $A \rightarrow M$.

- **1** Given a Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$, $(\mathfrak{g}, \mathfrak{h})$ is a Lie pair over $M = \{pt\}.$
- **2** If F is a regular foliation on M, (TM, TF) is a Lie pair over M.
- **3** If $\mathcal{F}_1, \mathcal{F}_2$ are transversal foliations on M, then $T\mathcal{F}_1 \bowtie T\mathcal{F}_2 \simeq TM$ is a matched pair.
- \bigcirc If (P, π) is a Poisson G− space (Poisson P w/ a Poisson G− action), then $A = (T^*P)_{\pi}$ $B = P \times \mathfrak{g}$ is a matched pair.
- \bullet If X is complex manifold then $(\mathit{T}X \otimes \mathbb{C},\mathcal{T}^{0,1}X)$ is a Lie pair and $A = \mathcal{T}^{0,1}X, B = \mathcal{T}^{1,0}X$ is a matched pair.

 $\left\{ \bigoplus_k k \bigoplus_k k \bigoplus_k k \right\}$

つくい

Lie pair $(L, A) =$ Lie algebroid $L \rightarrow M +$ Lie subalgebroid $A \rightarrow M$.

- **1** Given a Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$, $(\mathfrak{g}, \mathfrak{h})$ is a Lie pair over $M = \{pt\}.$
- **2** If F is a regular foliation on M, (TM, TF) is a Lie pair over M.
- **3** If $\mathcal{F}_1, \mathcal{F}_2$ are transversal foliations on M, then $T\mathcal{F}_1 \bowtie T\mathcal{F}_2 \simeq TM$ is a matched pair.
- \bigcirc If (P, π) is a Poisson G− space (Poisson P w/ a Poisson G− action), then $A = (T^*P)_{\pi}$ $B = P \times \mathfrak{g}$ is a matched pair.
- \bullet If X is complex manifold then $(\mathit{T}X \otimes \mathbb{C},\mathcal{T}^{0,1}X)$ is a Lie pair and $A = \mathcal{T}^{0,1}X, B = \mathcal{T}^{1,0}X$ is a matched pair.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Lie pair $(L, A) =$ Lie algebroid $L \rightarrow M +$ Lie subalgebroid $A \rightarrow M$.

- **1** Given a Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$, $(\mathfrak{g}, \mathfrak{h})$ is a Lie pair over $M = \{pt\}.$
- **2** If F is a regular foliation on M, (TM, TF) is a Lie pair over M.
- **3** If $\mathcal{F}_1, \mathcal{F}_2$ are transversal foliations on M, then $T\mathcal{F}_1 \bowtie T\mathcal{F}_2 \simeq TM$ is a matched pair.
- \bigcirc If (P, π) is a Poisson G− space (Poisson P w/ a Poisson G− action), then $A = (T^*P)_{\pi}$ $B = P \times \mathfrak{g}$ is a matched pair.
- \bullet If X is complex manifold then $(\mathit{T}X \otimes \mathbb{C},\mathcal{T}^{0,1}X)$ is a Lie pair and $A = \mathcal{T}^{0,1}X, B = \mathcal{T}^{1,0}X$ is a matched pair.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Lie pair $(L, A) =$ Lie algebroid $L \rightarrow M +$ Lie subalgebroid $A \rightarrow M$.

- **1** Given a Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$, $(\mathfrak{g}, \mathfrak{h})$ is a Lie pair over $M = \{pt\}.$
- **2** If F is a regular foliation on M, (TM, TF) is a Lie pair over M.
- **3** If $\mathcal{F}_1, \mathcal{F}_2$ are transversal foliations on M, then $T\mathcal{F}_1 \bowtie T\mathcal{F}_2 \simeq T\mathcal{M}$ is a matched pair.
- \bigcirc If (P, π) is a Poisson G− space (Poisson P w/ a Poisson G− action), then $A = (T^*P)_\pi$ $B = P \times \mathfrak{g}$ is a matched pair.
- \bullet If X is complex manifold then $(\mathit{T}X \otimes \mathbb{C},\mathcal{T}^{0,1}X)$ is a Lie pair and $A = \mathcal{T}^{0,1}X, B = \mathcal{T}^{1,0}X$ is a matched pair.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Lie pair $(L, A) =$ Lie algebroid $L \rightarrow M +$ Lie subalgebroid $A \rightarrow M$.

- **1** Given a Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$, $(\mathfrak{g}, \mathfrak{h})$ is a Lie pair over $M = \{pt\}.$
- **2** If F is a regular foliation on M, (TM, TF) is a Lie pair over M.
- **3** If $\mathcal{F}_1, \mathcal{F}_2$ are transversal foliations on M, then $T\mathcal{F}_1 \bowtie T\mathcal{F}_2 \simeq T\mathcal{M}$ is a matched pair.
- \bigoplus If (P, π) is a Poisson G− space (Poisson P w/ a Poisson G− action), then $A = (T^*P)_\pi$ $B = P \times \mathfrak{g}$ is a matched pair.
- \bullet If X is complex manifold then $(\mathit{T}X\otimes\mathbb{C},\mathcal{T}^{0,1}X)$ is a Lie pair and $A=\mathcal{T}^{0,1}X, B=\mathcal{T}^{1,0}X$ is a matched pair.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

 \rightarrow Lie algebroids come with a cohomology theory (recovering Lie algebra, de Rham, Dolbeault cohomologies)

Definition

A connection of a Lie algebroid L on a vector bundle E is a linear map $\nabla : \Gamma(L) \otimes \Gamma(E) \rightarrow \Gamma(E)$ such that

$$
\nabla_{\mathit{fl}}e = f \nabla_{\mathit{l}}e, \quad \nabla_{\mathit{l}}f e = f \nabla_{\mathit{l}}e + \rho(\mathit{l})(f)e.
$$

When the curvature $R^\nabla : L \wedge L \to \mathrm{End}(E)$ vanishes, this is a Lie algebroid representation on E.

Example (Bott connection): For a Lie pair (L, A) , take $E = L/A$, $\nabla_a^{Bott} \overline{l} = \overline{[a, l]}$. It is a flat $A-$ connection. \rightarrow The section $R^\nabla_{1,1} \in \Gamma(A^*\otimes(L/A)^*\otimes \mathrm{End}(E))$ is a 1-cocycle whose induced cohomology (a.k.a. Atiyah) class is independent of the choice of $L-$ connection extending ∇^{A} .

 \rightarrow Lie algebroids come with a cohomology theory (recovering Lie algebra, de Rham, Dolbeault cohomologies)

Definition

A connection of a Lie algebroid L on a vector bundle E is a linear map $\nabla : \Gamma(L) \otimes \Gamma(E) \rightarrow \Gamma(E)$ such that

$$
\nabla_{\mathit{fl}}e = f \nabla_{\mathit{l}}e, \quad \nabla_{\mathit{l}}f e = f \nabla_{\mathit{l}}e + \rho(\mathit{l})(f)e.
$$

When the curvature $R^\nabla : L \wedge L \to \mathrm{End}(E)$ vanishes, this is a Lie algebroid representation on E.

Example (Bott connection): For a Lie pair (L, A) , take $E = L/A$, $\nabla_{a}^{Bott} \overline{I} = \overline{[a, I]}$. It is a flat $A-$ connection. \rightarrow The section $R^\nabla_{1,1} \in \Gamma(A^*\otimes(L/A)^*\otimes \mathrm{End}(E))$ is a 1-cocycle whose induced cohomology (a.k.a. Atiyah) class is independent of the choice of $L-$ connection extending ∇^{A} .

 \rightarrow Lie algebroids come with a cohomology theory (recovering Lie algebra, de Rham, Dolbeault cohomologies)

Definition

A connection of a Lie algebroid L on a vector bundle E is a linear map $\nabla : \Gamma(L) \otimes \Gamma(E) \rightarrow \Gamma(E)$ such that

$$
\nabla_{\mathit{fl}}e = f \nabla_{\mathit{l}}e, \quad \nabla_{\mathit{l}}f e = f \nabla_{\mathit{l}}e + \rho(\mathit{l})(f)e.
$$

When the curvature $R^\nabla : L \wedge L \to \mathrm{End}(E)$ vanishes, this is a Lie algebroid representation on E.

Example (Bott connection): For a Lie pair (L, A) , take $E = L/A$, $\nabla_{a}^{Bott} \overline{I} = \overline{[a, I]}$. It is a flat $A-$ connection. \rightarrow The section $R^\nabla_{1,1} \in \mathsf{\Gamma}(A^* \otimes (L/A)^* \otimes \mathrm{End}(E))$ is a 1-cocycle whose induced cohomology (a.k.a. Atiyah) class is independent of the choice of $L-$ connection extending ∇^A .

Higher Representations

Definition

A representation up to homotopy of A – or homotopy A-module – is a (split, finite dimensional) graded vector bundle E with vector bundle morphism/chain map $\partial : E_{\bullet} \to E_{\bullet+1}$, together with an A-connection ∇ on E, and a family of forms $(\omega_A^{(k)})$ $\binom{k}{A}_{k\geq 2}\in\Omega^k(A,\mathrm{End}(E))_1$ of total degree $+1$ such that

$$
[d_A^{\nabla}, \partial] = 0 \tag{1}
$$

$$
R_A^{(k)} + [\partial, \omega_A^{(k)}] = 0 \qquad \text{for every } k \ge 2 \tag{2}
$$

 $R_{\rm A}^{(k)}$ $A^{(k)}_A$ is the *curvature k-form* associated to the connection $k-1$ -form $\omega_A^{(k-1)}$ $\stackrel{(\kappa-1)}{A}$:

$$
R_A^{(k)} = d_A \omega_A^{(k-1)} + \sum_{\substack{1 \le s,t \le k-1 \\ s+t=k}} \omega_A^{(s)} \wedge \omega_A^{(t)}.
$$

DG Geometry

Let M be a smooth manifold with structure sheaf \mathcal{O}_M . Let $\hat{S}(V^*)$ denote the algebra of formal power series on some fixed Z− graded vector space V.

Definition

A \mathbb{Z} − graded manifold M with body M is a sheaf R of \mathbb{Z} − graded commutative \mathcal{O}_M algebras over M such that $\mathcal{R}(U) \cong \mathcal{O}_\mathcal{M}(U) \hat{\otimes} \hat{\mathcal{S}}(V^*)$ for all sufficiently small open subsets $U \subset M$.

A dg manifold is a $\mathbb{Z}-$ graded manifold M endowed with a vector field $Q \in \mathfrak{X}(\mathcal{M})$ of degree +1 such that $[Q, Q] = 2Q \circ Q = 0$.

We say that Q is a *homological* vector field on the graded manifold M.

何 ▶ (三) (三)

DG Geometry

Let M be a smooth manifold with structure sheaf \mathcal{O}_M . Let $\hat{S}(V^*)$ denote the algebra of formal power series on some fixed Z− graded vector space V.

Definition

A \mathbb{Z} − graded manifold M with body M is a sheaf R of \mathbb{Z} − graded commutative \mathcal{O}_M algebras over M such that $\mathcal{R}(U) \cong \mathcal{O}_\mathcal{M}(U) \hat{\otimes} \hat{\mathcal{S}}(V^*)$ for all sufficiently small open subsets $U \subset M$.

Definition

A dg manifold is a $\mathbb{Z}-$ graded manifold M endowed with a vector field $Q \in \mathfrak{X}(\mathcal{M})$ of degree +1 such that $[Q, Q] = 2Q \circ Q = 0$.

We say that Q is a *homological* vector field on the graded manifold M

何 ▶ (ヨ ト (ヨ ト

- If L is a Lie algebroid, then $\mathcal{M} = L[1]$ is a dg manifold. \checkmark its algebra of functions: $C^{\infty}(L[1]) \cong \Lambda^{\bullet} L^*$ \checkmark its homological vector field: $Q = d_L$ (Lie al/oid cohomology)
- If M is a smooth manifold, then $\mathcal{M} = T_M[1]$ is a dg manifold. \checkmark its algebra of functions: $C^\infty(\mathcal{T}_M[1]) \cong \Omega^\bullet(M)$
	- \checkmark its homological vector field: $Q = d_{dR}$ (de Rham)
- If X is a complex manifold, then $\mathcal{M}= \mathcal{T}_X^{0,1}$ $\chi^{0,1}[1]$ is a dg manifold.
	- √ its algebra of functions: $C^{\infty}T_X^{0,1}$ $\Omega^{0,1}_X[1]]\big)\cong \Omega^{0,\bullet}(X)$
	- \checkmark its homological vector field: $Q = \partial$ (Dolbeault operator)
- If $s \in \Gamma(E)$, then $E[-1]$ is a dg manifold (the derived zero locus of s)

 \checkmark its algebra of functions $C^{\infty}(E[-1])$ with homological vector field $Q = i_s$ is

イロト イ母 トイミト イミ

- If L is a Lie algebroid, then $\mathcal{M} = L[1]$ is a dg manifold. \checkmark its algebra of functions: $C^{\infty}(L[1]) \cong \Lambda^{\bullet} L^*$ \checkmark its homological vector field: $Q = d_L$ (Lie al/oid cohomology)
- If M is a smooth manifold, then $\mathcal{M} = T_M[1]$ is a dg manifold. \checkmark its algebra of functions: $C^\infty(\mathcal{T}_M[1]) \cong \Omega^\bullet(M)$
	- \checkmark its homological vector field: $Q = d_{dR}$ (de Rham)
- If X is a complex manifold, then $\mathcal{M}= \mathcal{T}_X^{0,1}$ $\chi^{0,1}[1]$ is a dg manifold.
	- √ its algebra of functions: $C^{\infty}T_X^{0,1}$ $\Omega^{0,1}_X[1]]\big)\cong \Omega^{0,\bullet}(X)$
	- \checkmark its homological vector field: $Q = \bar{\partial}$ (Dolbeault operator)
- If $s \in \Gamma(E)$, then $E[-1]$ is a dg manifold (the derived zero locus of s)

 \checkmark its algebra of functions $C^{\infty}(E[-1])$ with homological vector field $Q = i_s$ is

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- If L is a Lie algebroid, then $\mathcal{M} = L[1]$ is a dg manifold. \checkmark its algebra of functions: $C^{\infty}(L[1]) \cong \Lambda^{\bullet} L^*$ \checkmark its homological vector field: $Q = d_L$ (Lie al/oid cohomology)
- If M is a smooth manifold, then $\mathcal{M} = T_M[1]$ is a dg manifold. \checkmark its algebra of functions: $C^\infty(\mathcal{T}_M[1]) \cong \Omega^\bullet(M)$
	- \checkmark its homological vector field: $Q = d_{dR}$ (de Rham)
- If X is a complex manifold, then $\mathcal{M} = \mathcal{T}_X^{0,1}$ $\chi^{0,1}[1]$ is a dg manifold.
	- ✓ its algebra of functions: $C^{\infty}T_X^{0,1}$ $\Omega^{0,1}_X[1]]$) ≅ $\Omega^{0,\bullet}(X)$
	- \checkmark its homological vector field: $Q = \partial$ (Dolbeault operator)
- If $s \in \Gamma(E)$, then $E[-1]$ is a dg manifold (the derived zero locus of s)

 \checkmark its algebra of functions $C^{\infty}(E[-1])$ with homological vector field $Q = i_s$ is

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right. \right\} & \leftarrow \bot \Xi \end{array} \right.$

 QQ

- If L is a Lie algebroid, then $\mathcal{M} = L[1]$ is a dg manifold. \checkmark its algebra of functions: $C^{\infty}(L[1]) \cong \Lambda^{\bullet} L^*$ \checkmark its homological vector field: $Q = d_L$ (Lie al/oid cohomology)
- If M is a smooth manifold, then $\mathcal{M} = T_M[1]$ is a dg manifold. \checkmark its algebra of functions: $C^\infty(\mathcal{T}_M[1]) \cong \Omega^\bullet(M)$
	- \checkmark its homological vector field: $Q = d_{dR}$ (de Rham)
- If X is a complex manifold, then $\mathcal{M} = \mathcal{T}_X^{0,1}$ $\chi^{0,1}[1]$ is a dg manifold.
	- ✓ its algebra of functions: $C^{\infty}T_X^{0,1}$ $\Omega^{0,1}_X[1]]$) ≅ $\Omega^{0,\bullet}(X)$
	- \checkmark its homological vector field: $Q = \partial$ (Dolbeault operator)
- If $s \in \Gamma(E)$, then $E[-1]$ is a dg manifold (the derived zero locus of s)

 \checkmark its algebra of functions $C^{\infty}(E[-1])$ with homological vector field $Q = i_s$ is $\cdots \stackrel{i_s}{\longrightarrow} \wedge^2 E^* \stackrel{i_s}{\longrightarrow} \wedge^1 E^* \stackrel{i_s}{\longrightarrow} C^\infty(M)$

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \bullet & \leftarrow \Xi \right. \right\} & \leftarrow \bot \Xi \end{array} \right.$

Connections on graded manifolds

Since Lie pairs, regular foliations, complex manifolds, Courant algebroids and etc are included in the category of graded manifolds...

For every Lie pair (L, A) , $\mathcal{M} = L[1] \oplus L/A$ is a dg manifold s.t. ι : A[1] \rightarrow M and p : $\mathcal{M} \rightarrow L[1]$ are morphisms of dg manifolds

A connection on a graded manifold M is a linear map ∇ : $\mathfrak{X}(\mathcal{M}) \otimes \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M})$ of degree 0 such that

$$
\nabla_{fX} Y = f \nabla_X Y, \quad \nabla_X fY = X(f)Y + (-1)^{|X||f|} f \nabla_X Y
$$

for all homogeneous $f \in C^{\infty}(\mathcal{M}), X, Y \in \mathfrak{X}(\mathcal{M}).$

Connections on graded manifolds

Since Lie pairs, regular foliations, complex manifolds, Courant algebroids and etc are included in the category of graded manifolds...

Theorem (B. - Voglaire)

For every Lie pair (L, A) , $\mathcal{M} = L[1] \oplus L/A$ is a dg manifold s.t. ι : A[1] \rightarrow M and p : $\mathcal{M} \rightarrow L[1]$ are morphisms of dg manifolds

A connection on a graded manifold M is a linear map ∇ : $\mathfrak{X}(\mathcal{M}) \otimes \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M})$ of degree 0 such that

$$
\nabla_{fX} Y = f \nabla_X Y, \quad \nabla_X fY = X(f)Y + (-1)^{|X||f|} f \nabla_X Y
$$

for all homogeneous $f \in C^{\infty}(\mathcal{M}), X, Y \in \mathfrak{X}(\mathcal{M}).$

Since Lie pairs, regular foliations, complex manifolds, Courant algebroids and etc are included in the category of graded manifolds...

Theorem (B. - Voglaire)

For every Lie pair (L, A) , $\mathcal{M} = L[1] \oplus L/A$ is a dg manifold s.t. ι : A[1] \rightarrow M and p : $\mathcal{M} \rightarrow L[1]$ are morphisms of dg manifolds

Definition

A connection on a graded manifold M is a linear map ∇ : $\mathfrak{X}(\mathcal{M}) \otimes \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M})$ of degree 0 such that

$$
\nabla_{fX} Y = f \nabla_X Y, \quad \nabla_X fY = X(f)Y + (-1)^{|X||f|} f \nabla_X Y
$$

for all homogeneous $f \in C^{\infty}(\mathcal{M}), X, Y \in \mathfrak{X}(\mathcal{M}).$

 $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right.$ $\left\{ \bigoplus_{i=1}^{n} x_i \in \mathbb{R} \right.$

 \checkmark Choose a torsion-free connection on $\mathcal M$ (recall that $\Gamma(T\mathcal{M}) := \mathfrak{X}(\mathcal{M})$

∇ : $\mathfrak{X}(\mathcal{M}) \otimes \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M}).$

 \checkmark Consider the section $\mathrm{At}^\nabla_{(\mathcal{M}, Q)}$ of $\mathrm{Hom}(S^2(\mathcal{TM}, \mathcal{TM}))$ of degree $+1$ defined by

$$
\mathrm{At}^{\nabla}_{(\mathcal{M},\mathcal{Q})}(X,Y) = \mathcal{L}_{\mathcal{Q}}(\nabla_X Y) - \nabla_{\mathcal{L}_{\mathcal{Q}}X} Y - (-1)^{|X|} \nabla_X (\mathcal{L}_{\mathcal{Q}} Y)
$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$. \checkmark Since $\mathcal{L}_Q\circ\mathcal{L}_Q=0$, $\mathrm{At}^\nabla_{(\mathcal{M},Q)}=\mathcal{L}_Q\nabla$ is a 1-cocycle of the cochain complex

$$
\Big(\Gamma(\mathrm{Hom}(S^2(\mathcal{TM}),\mathcal{TM})),\mathcal{L}_{Q}\Big)
$$

 \checkmark \checkmark \checkmark \checkmark \checkmark Its cohomology class in independent of th[e c](#page-25-0)[ho](#page-27-0)[i](#page-25-0)ce [o](#page-30-0)[f](#page-0-0) ∇ [.](#page-39-0)

 \checkmark Choose a torsion-free connection on $\mathcal M$ (recall that $\Gamma(T\mathcal{M}) := \mathfrak{X}(\mathcal{M})$

 ∇ : $\mathfrak{X}(\mathcal{M}) \otimes \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M}).$

 \checkmark Consider the section $\mathrm{At}^\nabla_{(\mathcal{M},\mathcal{Q})}$ of $\mathrm{Hom} (S^2(\mathcal{TM},\mathcal{TM})$ of degree $+1$ defined by

$$
\mathrm{At}^{\nabla}_{(\mathcal{M},Q)}(X,Y)=\mathcal{L}_{Q}(\nabla_{X}Y)-\nabla_{\mathcal{L}_{Q}X}Y-(-1)^{|X|}\nabla_{X}(\mathcal{L}_{Q}Y)
$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$. \checkmark Since $\mathcal{L}_Q\circ\mathcal{L}_Q=0$, $\mathrm{At}^\nabla_{(\mathcal{M},Q)}=\mathcal{L}_Q\nabla$ is a 1-cocycle of the cochain complex

$$
\Big(\Gamma(\mathrm{Hom}(S^2(\mathcal{TM}),\mathcal{TM})),\mathcal{L}_{Q}\Big)
$$

 \checkmark \checkmark \checkmark \checkmark \checkmark Its cohomology class in independent of th[e c](#page-26-0)[ho](#page-28-0)[i](#page-25-0)ce [o](#page-30-0)[f](#page-0-0) ∇ [.](#page-39-0)

 \checkmark Choose a torsion-free connection on $\mathcal M$ (recall that $\Gamma(T\mathcal{M}) := \mathfrak{X}(\mathcal{M})$

 ∇ : $\mathfrak{X}(\mathcal{M}) \otimes \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M}).$

 \checkmark Consider the section $\mathrm{At}^\nabla_{(\mathcal{M},\mathcal{Q})}$ of $\mathrm{Hom} (S^2(\mathcal{TM},\mathcal{TM})$ of degree $+1$ defined by

$$
\mathrm{At}^{\nabla}_{(\mathcal{M},\mathcal{Q})}(X,Y)=\mathcal{L}_{\mathcal{Q}}(\nabla_{X}Y)-\nabla_{\mathcal{L}_{\mathcal{Q}}X}Y-(-1)^{|X|}\nabla_{X}(\mathcal{L}_{\mathcal{Q}}Y)
$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$. \checkmark Since $\mathcal{L}_{Q}\circ\mathcal{L}_{Q}=0$, $\mathrm{At}^\nabla_{(\mathcal{M},Q)}=\mathcal{L}_{Q}\nabla$ is a 1-cocycle of the cochain complex

$$
\bigg(\Gamma(\mathrm{Hom}(S^2(\mathcal{T}\mathcal{M}),\mathcal{T}\mathcal{M})),\mathcal{L}_{\mathcal{Q}}\bigg)
$$

 \checkmark \checkmark \checkmark \checkmark \checkmark Its cohomology class in independent of th[e c](#page-27-0)[ho](#page-29-0)[i](#page-25-0)ce [o](#page-30-0)[f](#page-0-0) ∇ [.](#page-39-0)

 \checkmark Choose a torsion-free connection on $\mathcal M$ (recall that $\Gamma(T\mathcal{M}) := \mathfrak{X}(\mathcal{M})$

$$
\nabla: \ \mathfrak{X}(\mathcal{M}) \otimes \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M}).
$$

 \checkmark Consider the section $\mathrm{At}^\nabla_{(\mathcal{M},\mathcal{Q})}$ of $\mathrm{Hom} (S^2(\mathcal{TM},\mathcal{TM})$ of degree $+1$ defined by

$$
\mathrm{At}^{\nabla}_{(\mathcal{M},\mathcal{Q})}(X,Y)=\mathcal{L}_{\mathcal{Q}}(\nabla_{X}Y)-\nabla_{\mathcal{L}_{\mathcal{Q}}X}Y-(-1)^{|X|}\nabla_{X}(\mathcal{L}_{\mathcal{Q}}Y)
$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$. \checkmark Since $\mathcal{L}_{Q}\circ\mathcal{L}_{Q}=0$, $\mathrm{At}^\nabla_{(\mathcal{M},Q)}=\mathcal{L}_{Q}\nabla$ is a 1-cocycle of the cochain complex

$$
\bigg(\Gamma(\mathrm{Hom}(S^2(\mathcal{T}\mathcal{M}),\mathcal{T}\mathcal{M})),\mathcal{L}_{Q}\bigg)
$$

 \checkmark \checkmark \checkmark \checkmark \checkmark Its cohomology class in independent of th[e c](#page-28-0)[ho](#page-30-0)[i](#page-25-0)ce [o](#page-30-0)[f](#page-0-0) ∇ [.](#page-39-0)

A connection ∇ on a dg manifold (M, Q) is said to be compatible with Q if

$$
\mathcal{L}_{Q}(\nabla_{X}Y)=\nabla_{L_{Q}X}Y+(-1)^{|X|}\nabla_{X}(\mathcal{L}_{Q}Y),
$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$.

The Atiyah class of the dg manifold (M, Q)

$$
\alpha_{(\mathcal{M}, Q)} := [\mathrm{At}_{(\mathcal{M}, Q)}^{\nabla}] \in H^1\bigg(\Gamma(\mathrm{Hom}(S^2(\mathcal{T}\mathcal{M}), \mathcal{T}\mathcal{M})), \mathcal{L}_Q\bigg)
$$

is the obstruction to existence of a connection on M compatible with the homological vector field Q.

A connection ∇ on a dg manifold (M, Q) is said to be compatible with Q if

$$
\mathcal{L}_{Q}(\nabla_{X}Y)=\nabla_{L_{Q}X}Y+(-1)^{|X|}\nabla_{X}(\mathcal{L}_{Q}Y),
$$

for all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$.

Definition

The Atiyah class of the dg manifold (M, Q)

$$
\alpha_{(\mathcal{M},Q)} := [\mathrm{At}_{(\mathcal{M},Q)}^\nabla] \in H^1\bigg(\Gamma(\mathrm{Hom}(S^2(\mathcal{T}\mathcal{M}),\mathcal{T}\mathcal{M})),\mathcal{L}_Q\bigg)
$$

is the obstruction to existence of a connection on M compatible with the homological vector field Q.

Theorem (B. - Voglaire)

For every Lie pair (L, A) coming from a matched pair and its corresponding dg manifold $L[1] \oplus L/A$, the Atiyah classes "coincide".

For every Lie pair (L, A) , there exists an L_{∞} quasi-isomorphism

 $\mathrm{tot}(\Gamma(\Lambda^\bullet A^\ast)\otimes \mathcal{T}_{poly}^\bullet) \to \mathrm{tot}(\Gamma(\Lambda^\bullet A^\ast)\otimes \mathcal{D}_{poly}^\bullet)$

whose first Taylor coefficient is hkr \circ $(td_{L/A}^\nabla)^{\frac{1}{2}}.$

 \rightarrow There is a dg manifold version by Stiénon-Xu.

Theorem (B. - Voglaire)

For every Lie pair (L, A) coming from a matched pair and its corresponding dg manifold $L[1] \oplus L/A$, the Atiyah classes "coincide".

Theorem (Liao - Stiénon - Xu)

For every Lie pair (L, A), there exists an L_{∞} quasi-isomorphism

$$
\mathop{\mathit{tot}}\nolimits\bigl(\Gamma(\Lambda^\bullet A^\ast)\otimes{\mathcal T}^\bullet_{\mathop{\mathit{poly}}\nolimits}\bigr)\rightarrow\mathop{\mathit{tot}}\nolimits\bigl(\Gamma(\Lambda^\bullet A^\ast)\otimes{\mathcal D}^\bullet_{\mathop{\mathit{poly}}\nolimits}\bigr)
$$

whose first Taylor coefficient is hkr \circ $(td_{L/A}^\nabla)^{\frac{1}{2}}.$

 \rightarrow There is a dg manifold version by Stiénon-Xu.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Theorem (B. - Voglaire)

For every Lie pair (L, A) coming from a matched pair and its corresponding dg manifold $L[1] \oplus L/A$, the Atiyah classes "coincide".

Theorem (Liao - Stiénon - Xu)

For every Lie pair (L, A) , there exists an L_{∞} quasi-isomorphism

$$
tot(\Gamma (\Lambda^\bullet A^\ast)\otimes {\mathcal T}^\bullet_{poly})\to tot(\Gamma (\Lambda^\bullet A^\ast)\otimes {\mathcal D}^\bullet_{poly})
$$

whose first Taylor coefficient is hkr \circ $(td_{L/A}^\nabla)^{\frac{1}{2}}.$

 \rightarrow There is a dg manifold version by Stiénon-Xu.

何 ▶ (三) (三)

Theorem (B. - Lavau)

Let (L, A) be a Lie pair, (E, D_A) be a representation up to homotopy of A, and D_1 be a superconnection of L on E extending D_A . Then, D_I induces a total degree $+1$ differential s on

$$
\widehat{\Omega}(E)=\bigoplus_{j=-\infty}^{\infty}\bigoplus_{k=0}^{\mathrm{rk}(A)}\Omega^k(A,A^\circ\otimes \mathrm{End}_j(E))
$$

making $A^{\circ} \otimes \text{End}(E)$ a r.u.t.h. of A. \exists a 1-cocycle $\alpha = \sum_k \alpha^{(k)}$ of $(\widehat{\Omega}(E), s)$ such that:

 $\mathbf{D} \; [\alpha] \in H^1(\widehat{\Omega}(E), s)$ does not depend on the choice of D_L

 Ω [α] = 0 iff \exists a homotopy A-compatible L-superconnection

 $\bullet\,$ If E is "regular" and a resolution of $H^0(E,\partial),$ then

$$
H^p\big(\widehat{\Omega}(E),s\big)\simeq H^p\big(A,A^\circ\otimes \mathrm{End} (K)\big),\;\; [\alpha]\mapsto [\mathrm{at}_K]
$$

A contraction is the data

- two cochain complexes (V, d_V) , (W, d_W)
- two chain maps $\tau : V \hookrightarrow W$, $\sigma : W \twoheadrightarrow V$
- a homotopy operator $h: W \to W$ of degree -1 s.t.

$$
\sigma\tau = id_V, \ \ id_W - \tau\sigma = hd_W + d_Wh, \ \ \sigma h = 0, \ \ h\tau = 0, h^2 = 0.
$$

Tensor trick: Out of this you can build contractions of tensors on V, W .

A contraction is the data

- two cochain complexes (V, d_V) , (W, d_W)
- two chain maps $\tau : V \hookrightarrow W$, $\sigma : W \twoheadrightarrow V$
- a homotopy operator $h: W \to W$ of degree -1 s.t.

$$
\sigma\tau = id_V, \ \ id_W - \tau\sigma = hd_W + d_Wh, \ \ \sigma h = 0, \ \ h\tau = 0, h^2 = 0.
$$

Tensor trick: Out of this you can build contractions of tensors on V, W .

Theorem (B. - Lavau)

With the same conditions (E is a resolution of $H^0(E, \partial)$) set $\mathcal{E}=\pi^*E$ (resp. $\mathcal{K}=\pi^*K)$ to be the pullback of E (resp. $K)$ over $\pi : A[1] \rightarrow M$.

- **1** The operator $d = D_A \partial$ is a small perturbation of a contraction between $(\Gamma_{A[1]}(\mathcal{K}), 0)$ and $(\Gamma_{A[1]}(\mathcal{E}), \partial)$. The perturbed contraction forms a contraction data over $(C^{\infty}(A[1]), d_A)$.
- **2** There is a quasi-isomorphism

$$
\left(\widehat{\Omega}(E)^{\bullet,\bullet},s\right)\simeq \left(\Gamma_{A[1]}\big({\mathcal{L}}^*\otimes \operatorname{End}({\mathcal{E}})\big),{\mathcal{Q}}+[D_A,.]\right).
$$

where Q is the homological vector field associated to the dg Lie algebroid $\mathcal{L} \rightarrow A[1]$.

K 何 ▶ K 手 ▶ K 手

Thank you all!

メロメメ 御 メメ きょく ミメー

E