

Mathematical Institute

nah

▭

Energy spectrum and quantitative estimates for harmonic maps

Melanie Rupflin, University of Oxford 16th Panhellenic Geometry Conference

Oxford Mathematics

Basic questions for variational problems:

Given an energy E , what can we say about

- \triangleright minimisers and critical points of E
- \blacktriangleright the energy spectrum

 $\Xi_E := \{E(u) : u \text{ critical point }\}$

KORKARYKERKER POLO

 \blacktriangleright the behaviour of

- \blacktriangleright minimising sequences
- ▶ almost critical points
- ▶ gradient flow $\partial_t u = -\nabla E(u)$

Are "almost minimisers" almost given by minimisers?

If we know that the minimum of E is achieved, we can ask whether

 $E(u) \approx E_{min}$ \Rightarrow $u \approx$ a minimiser ?

KO K K Ø K K E K K E K V K K K K K K K K K

Are "almost minimisers" almost given by minimisers? If we know that the minimum of E is achieved, we can ask whether

 $E(u) \approx E_{min}$ \Rightarrow $u \approx$ a minimiser ?

Qualitative version: Do we have

$$
E(u_i) \rightarrow \min E \Rightarrow dist(u_i, \{minimisers\}) \rightarrow 0?
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Are "almost minimisers" almost given by minimisers? If we know that the minimum of E is achieved, we can ask whether

$$
E(u) \approx E_{min} \quad \Rightarrow \quad u \approx \text{ a minimiser ?}
$$

Qualitative version: Do we have

$$
E(u_i) \rightarrow \min E \Rightarrow dist(u_i, \{minimisers\}) \rightarrow 0?
$$

Quantitative version: Can we bound

dist $^{2}(u,\{minimisers\})\leq C\delta_{u}^{\alpha}$

KORKARYKERKER POLO

for energy defect $\delta_u = E(u) - E_{min}$ and some $\alpha > 0$?

Are "almost minimisers" almost given by minimisers? If we know that the minimum of E is achieved, we can ask whether

$$
E(u) \approx E_{min} \quad \Rightarrow \quad u \approx \text{ a minimiser ?}
$$

Qualitative version: Do we have

$$
E(u_i) \rightarrow \min E \Rightarrow dist(u_i, \{minimisers\}) \rightarrow 0?
$$

Quantitative version: Can we bound

dist $^{2}(u,\{minimisers\})\leq C\delta_{u}^{\alpha}$

for energy defect $\delta_{\mu} = E(u) - E_{min}$ and some $\alpha > 0$?

In past 20 years: Important results in many fields of geometry and analysis, including Isoperimetric problems, spectral problems, Yamabe problem, umbilical surfaces, Elasticity, Sobolev embeddings ... (by Cianchi, Fusco, Maggi, Pratelli, Figalli, Novaga Capella, Otto, M¨uller, Brasco, De Philippis, Conti, Dolzmann, De Lellis, Székelyhidi, Topping, Engelstein, Neumayer, Spolaor, Lamm, Nguyen, Luckhaus, Zemas, ...)

Almost Critical points:

If u "almost solves" the Euler-Lagrange equation, i.e. is s.t. $\nabla E(u) \approx 0$, does this imply that

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright u is close to an exact solution, i.e. a critical point

 \blacktriangleright $E(u)$ is close to a critical value?

Almost Critical points:

If u "almost solves" the Euler-Lagrange equation, i.e. is s.t. $\nabla E(u) \approx 0$, does this imply that

 \blacktriangleright u is close to an exact solution, i.e. a critical point

 \blacktriangleright $E(u)$ is close to a critical value?

Quantitative version $=$ Łojasiewicz estimates Can we bound

$$
\text{dist}(u, \{\text{critical points}\}) \le C \|\nabla E(u)\|^{\gamma_1}
$$

$$
|E(u) - c^*| \le C \|\nabla E(u)\|^{\gamma_2}
$$
?

KORK ERKER ADAM ADA

Almost Critical points:

If u "almost solves" the Euler-Lagrange equation, i.e. is s.t. $\nabla E(u) \approx 0$, does this imply that

 \blacktriangleright u is close to an exact solution, i.e. a critical point

 \blacktriangleright $E(u)$ is close to a critical value?

Quantitative version $=$ Lojasiewicz estimates

Can we bound

dist $(u, \{\text{critical points}\}) \leq C \|\nabla E(u)\|^{\gamma_1}$ $|E(u) - c^*| \leq C ||\nabla E(u)||^{\gamma_2}$?

- ▶ Applications: Convergence of gradient flows, properties of energy spectrum, Quantitative rigidity estimates
- ▶ For analytic energies in non-singular situations: Many results known based on approach of L. Simon ('82)
- \blacktriangleright Few results that apply in singular situations: harmonic maps $S^2\to S^2$ Topping '04, Waldron'23 MCF: Colding-Minicozzi '15, Chodosh-Schulze '19 Optimal Sobolev embeddings: Figalli-Glaudo'19, Deng-Sun-Wei '21

Warm up: A simple energy:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Warm up: A simple energy:

Consider $E : \mathbb{R} \to \mathbb{R}$

$$
E(u) = cu^2, \quad \text{ for } c > 0.
$$

Then

$$
\delta_u := E(u) - E_{\min} = cu^2
$$
, dist = |u|, $\|\nabla E(u)\| = 2c|u|$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Warm up: A simple energy:

Consider $F : \mathbb{R} \to \mathbb{R}$

$$
E(u) = cu^2, \quad \text{ for } c > 0.
$$

Then

$$
\delta_u := E(u) - E_{\min} = cu^2
$$
, dist = |u|, $||\nabla E(u)|| = 2c|u|$.

so we have Lojasiewicz estimates

 $|E(u)-c^*|\leq C \|E(u)\|^2$ $||u - u^*$

for critical value $c^* = E(0) = 0$ $\| \le C \|\nabla E(u)\|,$ for critical point $u^* = 0$

and quantitative stability estimate

$$
||u - u^*|| \leq C \delta_u^{\frac{1}{2}}, \qquad \text{for minimiser } u^* = 0
$$

Intuition:

In "nice non-degenerate" situations, we might hope for Lojasiewicz estimates of the form

$$
|E(u) - c^*| \le C ||E(u)||^{\gamma_1}
$$
 for some $c^* \in \Xi_E := \{E(u) : u \in C\}$

$$
||u - u^*|| \le C ||\nabla E(u)||^{\gamma_2},
$$
 for some $u^* \in C := \{u : \nabla E(u) = 0\}$

for exponents $\gamma_1 = 2$ and $\gamma_2 = 1$, and quantitative stability estimate

 $||u - u^*|| \leq C \delta_u^{\gamma_3},$ for some $u^* \in \mathcal{M} := \{u : E(u) = \min E\}$

KOD KAD KED KED E VOOR

for $\gamma_3=\frac{1}{2}$.

Intuition:

In "nice non-degenerate" situations, we might hope for Lojasiewicz estimates of the form

$$
|E(u) - c^*| \le C ||E(u)||^{\gamma_1}
$$
 for some $c^* \in \Xi_E := \{E(u) : u \in C\}$

$$
||u - u^*|| \le C ||\nabla E(u)||^{\gamma_2},
$$
 for some $u^* \in C := \{u : \nabla E(u) = 0\}$

for exponents $\gamma_1 = 2$ and $\gamma_2 = 1$, and quantitative stability estimate

$$
||u - u^*|| \le C\delta_u^{\gamma_3}, \qquad \text{for some } u^* \in \mathcal{M} := \{u : E(u) = \min E\}
$$

for $\gamma_3=\frac{1}{2}$.

 $\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}{2}$.
If there are null-directions of d^2E which do not correspond to tangential directions to C resp. M and E is analytic then we might hope for such estimates with smaller exponents.

KORKAR KERKER SAGA

Intuition:

In "nice non-degenerate" situations, we might hope for Lojasiewicz estimates of the form

$$
|E(u) - c^*| \le C ||E(u)||^{\gamma_1}
$$
 for some $c^* \in \Xi_E := \{E(u) : u \in C\}$

$$
||u - u^*|| \le C ||\nabla E(u)||^{\gamma_2},
$$
 for some $u^* \in C := \{u : \nabla E(u) = 0\}$

for exponents $\gamma_1 = 2$ and $\gamma_2 = 1$, and quantitative stability estimate

$$
||u - u^*|| \le C\delta_u^{\gamma_3}, \qquad \text{for some } u^* \in \mathcal{M} := \{u : E(u) = \min E\}
$$

for $\gamma_3=\frac{1}{2}$.

 $\frac{1}{3}$ $\frac{2}{3}$ $\frac{2}{2}$.
If there are null-directions of d^2E which do not correspond to tangential directions to C resp. M and E is analytic then we might hope for such estimates with smaller exponents.

▶ True for PDEs and Variational problems with good convexity properties if there are NO SINGULARITIES, thanks to work of Lojasiewicz ('70s, finite dim) and Leon Simon ('83)

Dirichlet Energy and Harmonic maps

Let

$$
\blacktriangleright
$$
 (Σ, g) be a closed surface

 \blacktriangleright (N, g_N) a closed Riemannian manifold (any dimension)

A map $u : \Sigma \to N$ is harmonic if it is a critical point of

$$
E(u)=\frac{1}{2}\int_{\Sigma}|\nabla u|^2, \text{ i.e. so that } \tau_g(u):=-\nabla^{L^2}E(u)=0.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Dirichlet Energy and Harmonic maps

Let

- \blacktriangleright (Σ, g) be a closed surface
- \blacktriangleright (N, g_N) a closed Riemannian manifold (any dimension)

A map $u : \Sigma \to N$ is harmonic if it is a critical point of

$$
E(u)=\frac{1}{2}\int_{\Sigma}|\nabla u|^2, \text{ i.e. so that } \tau_g(u):=-\nabla^{L^2}E(u)=0.
$$

Recall:

- ▶ tension $\tau_g(u) = \text{tr}(\nabla du) = \Delta_g u + A(u)(\nabla u, \nabla u)$ (for $N \hookrightarrow \mathbb{R}^M$)
- \blacktriangleright E is conformally invariant wrt domain metric
- \blacktriangleright If u is (weakly) conformal and harmonic then it is a (branched) minimal immersion
- **►** For $\Sigma = S^2$: Non-constant *u* is harmonic iff it is a (weakly) conformal parametrisation of a (branched) minimial sphere

Energy spectrum of harmonic maps

Conjecture (L. Simon '90s, F.H. Lin '99) The energy spectrum

 $\Xi_E((\Sigma, g), N) := \{E(u) : u : (\Sigma, g) \to N$ harmonic, not constant}

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

is discrete for every closed analytic manifold N.

Energy spectrum of harmonic maps

Conjecture (L. Simon '90s, F.H. Lin '99) The energy spectrum

 $\Xi_E((\Sigma, g), N) := \{E(u) : u : (\Sigma, g) \to N$ harmonic, not constant}

is discrete for every closed analytic manifold N.

For $\Sigma=S^2$ equivalent to: Areas of minimal spheres in N are discrete

Energy spectrum of harmonic maps

Conjecture (L. Simon '90s, F.H. Lin '99) The energy spectrum

 $\Xi_E((\Sigma, g), N) := \{E(u) : u : (\Sigma, g) \to N$ harmonic, not constant}

is discrete for every closed analytic manifold N.

For $\Sigma=S^2$ equivalent to: Areas of minimal spheres in N are discrete

Known back then:

- \blacktriangleright True for very special cases where set of harmonic maps is known, e.g. $\Xi_E(S^2, S^2) = \{4\pi k, k \in \mathbb{N}\}.$
- ▶ For $\Sigma = S^2$: $E_N^* := \inf \Xi(S^2, N) > 0$ is achieved and isolated
- Any potential accumulation point of Ξ_F needs to have the form $E(u^*) + \sum_i E(\omega_i)$ for $u^* : \Sigma \to N$ and $\omega_i : S^2 \to N$ harmonic

Formation of bubble trees: Compactness theory from 90's:

- ▶ Sequences of almost harmonic maps u_i , i.e. u_i with $||\tau(u_i)||_{L^2} \to 0$, converge smoothly to a limit u_{∞} away from points where energy concentrates
- ▶ any concentration of energy corresponds to formation of (at least one) bubble, i.e. a highly scaled copy $\omega(\mu x)$ of a harmonic map $\omega: \mathbb{R}^2 \to N$.

KORKARYKERKER POLO

Formation of bubble trees: Compactness theory from 90's:

- ▶ Sequences of almost harmonic maps u_i , i.e. u_i with $||\tau(u_i)||_{L^2} \to 0$, converge smoothly to a limit u_{∞} away from points where energy concentrates
- ▶ concentration of energy must be caused by bubbling off of one or more minimial sphere(s)

KORK ERKER ADAM ADA

Formation of bubble trees: Compactness theory from 90's:

- ▶ Sequences of almost harmonic maps u_i , i.e. u_i with $||\tau(u_i)||_{L^2} \to 0$, converge smoothly to a limit u_{∞} away from points where energy concentrates
- ▶ concentration of energy must be caused by bubbling off of one or more minimial sphere(s)

Remark:

If $\Sigma = S^2$ and "all the energy concentrates at one scale and near one point", i.e. if $u_{\infty} = const$ and only one bubble forms, then we can pull-back by Möbius transforms to get smooth convergence.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Lowest candidate for accumulation point

First energy level where smooth convergence fails and hence result of Simon does not apply:

$$
\blacktriangleright \ \text{For} \ \Sigma = S^2 \colon
$$

$$
2\textit{E}^*_\textit{N}=2\,\text{inf}\, \Xi_\textit{E}(\textit{S}^2,\textit{N})
$$

corresponding to sequences of maps that converge to a bubble tree with non-trivial base map and a single bubble

$$
\blacktriangleright \ \text{For} \ \Sigma \neq S^2 \text{:}
$$

$$
E_N^* = \inf \Xi_E(S^2, N)
$$

corresponding to a sequence of maps that converges to a constant away from a single point where a bubble forms

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Results on energy spectrum:

Theorem (R.'21)

Let $\Sigma \neq S^2$ be any surface, and let N be any analytic manifold for which the harmonic spheres with minimal energy are not branched. Then E_N^* is not an accumulation point of $\Xi_E(\Sigma, N)$.

Results on energy spectrum:

Theorem (R.'21)

Let $\Sigma \neq S^2$ be any surface, and let N be any analytic manifold for which the harmonic spheres with minimal energy are not branched. Then E_N^* is not an accumulation point of $\Xi_E(\Sigma, N)$.

Theorem (R.'23)

Let N be any analytic 3 manifold for which the harmonic spheres with minimal energy are not branched and non-degenerate. Then $2E_N^*$ is not an accumulation point of $\Xi(\Sigma, N)$.

KORKARYKERKER POLO

Results on energy spectrum:

Theorem (R.'21)

Let $\Sigma \neq S^2$ be any surface, and let N be any analytic manifold for which the harmonic spheres with minimal energy are not branched. Then E_N^* is not an accumulation point of $\Xi_E(\Sigma, N)$.

Theorem (R.'23)

Let N be any analytic 3 manifold for which the harmonic spheres with minimal energy are not branched and non-degenerate. Then $2E_N^*$ is not an accumulation point of $\Xi(\Sigma, N)$.

Get additional results on:

- ▶ Lojasiewicz estimates for maps that are close to corresponding bubble trees
- ▶ Convergence of harmonic map flow in which such singularities form
- ▶ Results on gluing of two minimal spheres

Basic idea of proof (Malchiodi-R.-Sharp '20)

- \triangleright Construct a finite dimensional manifold $\mathcal Z$ of singularity models that are obtained by gluing a highly concentrated bubble onto a base map
- \triangleright Show that such singularity models can be constructed so that
	- \blacktriangleright d^2E is uniformly definite orthogonal to \mathcal{Z} , i.e. so that the Jacobi-operator on $\mathcal{T}_z^\perp \mathcal{Z}$ has a uniform eigenvalue gap around $\lambda = 0$
	- ▶ For each $z \in \mathcal{Z}$ which is not a critical point of E there is a unit direction $y_7 \in T$ _z $\mathcal Z$ with

 $dE(z)(y_z) \gg ||dE(z)||^2 + ||dE(z)|| \cdot ||d^2E(z)(y_z, \cdot)||$

Get Lojasiewicz estimates for free which tell us that

$$
|E(u)-\bar{E}|\leq C\|\tau(u)\|_{L^2}^{\gamma} \text{ for } \bar{E}=E_N^* \text{ resp. } \bar{E}=2E_N^*
$$

for any map u that is close to such a bubble tree. In particular $E(u) = \bar{E}$ if u is harmonic so Ξ_N can't accumulate at \bar{E} .

Rigidity of minimisers?

Suppose that $E_{min} = \text{inj }_{A} E$ is achieved in some homotopy class A of maps $u : \Sigma \to N$ and let M be the set of minimisers.

Question: Do almost minimisers, i.e. maps with small energy defect

$$
\delta_u = E(u) - E_{min}
$$

"look like minimisers"?

Rigidity of minimisers?

Suppose that $E_{min} = \text{inj}_{A} E$ is achieved in some homotopy class A of maps $u : \Sigma \to N$ and let M be the set of minimisers.

Question: Do almost minimisers, i.e. maps with small energy defect

$$
\delta_u = E(u) - E_{min}
$$

"look like minimisers"? I.e.

Does

$$
\delta_{u_i} \to 0 \text{ imply } dist_{H^1}(u_i, \mathcal{M}) \to 0
$$

and can we bound

dist $_{H^1}^2(u, \mathcal{M}) \leq C \delta_u^{\alpha}$

KORKARYKERKER POLO

Rigidity of minimisers for maps from S^2 to S^2

In the special case of maps $v:S^2\to S^2$ we have

 $E(v) \geq 4\pi |\deg(v)|$

with " $=$ " iff ν is a rational map, i.e. given by a meromorphic function

$$
\hat{v}:\hat{\mathbb{C}}\to\hat{\mathbb{C}}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

in either z or \bar{z} in stereographic coordinates on both the domain and target.

Rigidity of minimisers for maps from S^2 to S^2

In the special case of maps $v:S^2\to S^2$ we have

 $E(v) > 4\pi |\deg(v)|$

with " $=$ " iff ν is a rational map, i.e. given by a meromorphic function

$$
\hat{v}:\hat{\mathbb{C}}\to\hat{\mathbb{C}}
$$

in either z or \bar{z} in stereographic coordinates on both the domain and target.

Question:

Can we bound the distance of maps v with degree k from the set of degree k rational maps by the energy defect

$$
\delta_{v} := E(v) - 4\pi |\deg(v)|?
$$

KORKARYKERKER POLO

Rigidity for degree ± 1 maps

Theorem

For any map v : S $^2\to$ S 2 of degree ± 1 there exists a Möbius transform ω (in z or \bar{z}) so that

$$
\int_{S^2} |\nabla (\nu - \omega)|^2 d\nu_g \leq C \delta_{\nu}.
$$

- ▶ Due to Bernand-Mantel, Muratov and Simon ('19) in paper on ultra-thin ferromagnetic films and skyrmions
- \triangleright Simplified proofs by Topping ('20) and by Hirsch and Zemas ('20)

KORKARYKERKER POLO

▶ Extension to higher dimensions: Guerra, Lamy, Zemas ('23)

Rigidity for degree ± 1 maps

Theorem

For any map v : S $^2\to$ S 2 of degree ± 1 there exists a Möbius transform ω (in z or \bar{z}) so that

$$
\int_{S^2} |\nabla (\nu - \omega)|^2 d\nu_g \leq C \delta_{\nu}.
$$

- ▶ Due to Bernand-Mantel, Muratov and Simon ('19) in paper on ultra-thin ferromagnetic films and skyrmions
- \triangleright Simplified proofs by Topping ('20) and by Hirsch and Zemas ('20)

KORKARYKERKER POLO

▶ Extension to higher dimensions: Guerra, Lamy, Zemas ('23)

Key aspect of degree 1 maps:

 \triangleright Energy can only concentrate at a single point and scale

$$
\blacktriangleright \{\text{minimisers }\} = \{\text{ symmetry group }\}
$$

Rigidity for maps of general degree?

▶ Deng-Sun-Wei ('21): Local result (where energy concentration is a priori excluded) and conjecture of global quantitative rigidity estimate

$$
\mathsf{dist}_{H^1}^2(v, \mathcal{M}_k) \leq C \delta_v |\log \delta_v|, \quad \delta_v = E(v) - 4\pi k
$$

for

$$
M_k = \{ \text{degree } k \text{ rational maps} \}
$$

= $\{ \frac{p(z)}{q(z)} : \text{ polynomials with } max(\text{deg}(p), \text{deg}(q)) = k \}$

Rigidity for maps of general degree?

▶ Deng-Sun-Wei ('21): Local result (where energy concentration is a priori excluded) and conjecture of global quantitative rigidity estimate

$$
\mathsf{dist}_{H^1}^2(v, \mathcal{M}_k) \leq C \delta_v |\log \delta_v|, \quad \delta_v = E(v) - 4\pi k
$$

for

$$
M_k = \{ \text{degree } k \text{ rational maps} \}
$$

= $\{ \frac{p(z)}{q(z)} : \text{ polynomials with } max(\text{deg}(p), \text{deg}(q)) = k \}$

BUT as $E(v) \ge 4\pi k = 4\pi + ... + 4\pi$,

Rigidity for maps of general degree?

▶ Deng-Sun-Wei ('21): Local result (where energy concentration is a priori excluded) and conjecture of global quantitative rigidity estimate

$$
\mathsf{dist}_{H^1}^2(v, \mathcal{M}_k) \leq C \delta_v |\log \delta_v|, \quad \delta_v = E(v) - 4\pi k
$$

for

$$
M_k = \{ \text{degree } k \text{ rational maps} \}
$$

= $\{ \frac{p(z)}{q(z)} : \text{ polynomials with } max(\text{deg}(p), \text{deg}(q)) = k \}$

BUT as $E(v) > 4\pi k = 4\pi + ... + 4\pi$.

- \blacktriangleright Energy can concentrate at multiple scales/points
- ▶ Maps that describe behaviour on different "microdomains" and/or bulk might not match up as it is "cheap" to transition between different values on annuli with degenerating conformal structures

Rigidity for maps of general degree? NO!

Rigidity of minimisers is WRONG even at qualitative level for any degree $k \geq 2$ as there exist $v_n : S^2 \to S^2$ of any degree $k \geq 2$ with

 $\delta_{v_n} \to 0$ but dist $(v_n, \mathcal{M}_k) \to 0$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Rigidity for maps of general degree? NO!

Rigidity of minimisers is WRONG even at qualitative level for any degree $k \geq 2$ as there exist $v_n : S^2 \to S^2$ of any degree $k \geq 2$ with

 $\delta_{v_n} \to 0$ but dist $(v_n, \mathcal{M}_k) \to 0$.

Counterexample $(k=2, in stereographic coordinates)$: Modify $\omega(z)=z+\frac{1}{\mu z},\ \mu\gg 1$ by shifting by a constant $a\neq 0$ on the microdomain and using "cheap" way to transition. Resulting map v_{μ} with

$$
v_{\mu}(z) \approx z \text{ away from 0}
$$

$$
v_{\mu}(z) \approx \frac{1}{\mu z} + a \text{ for } |z| \le C\mu^{-1}
$$
 (1)

KORKAR KERKER SAGA

will be so that

▶ Distance from any rational map is $\geq |a|$

$$
\blacktriangleright \; \; \delta_{v_n}^2 \sim \tfrac{|a|^2}{\log \mu} \to 0
$$

Rigidity for maps of general degree? Maybe...

Better (?) Question:

- \triangleright Is every map v with small energy defect essentially described by a collection of rational maps that describe the behaviour of v on bulk and on different "microdomains"?
- \blacktriangleright If so, can we bound the distance of v to such a collection of rational maps in terms of the energy defect?

KORK ERKER ADAM ADA

Let ω_1,\ldots,ω_j be a collection of rational maps from S^2 to $S^2.$ These maps correspond to very different scales/concentration points if there is a partition of S^2 into sets Ω_i so that

- \blacktriangleright all Ω_i are obtained from balls by removing a finite number of balls with far smaller radius
- \triangleright ω_i is essentially constant outside of Ω_i in the sense that

$$
\blacktriangleright \int_{S^2 \setminus \Omega_i} |\nabla \omega_i|^2 \text{ and}
$$

 $\sum_{S^2 \setminus \Omega_i} |\nabla \omega_i|$ and
 \blacktriangleright the oscillation of ω_i over connected components of $S^2 \setminus \Omega_i$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

are very small.

Let ω_1,\ldots,ω_j be a collection of rational maps from S^2 to $S^2.$ These maps correspond to very different scales/concentration points if there is a partition of S^2 into sets Ω_i so that

- \blacktriangleright all Ω_i are obtained from balls by removing a finite number of balls with far smaller radius
- \triangleright ω_i is essentially constant outside of Ω_i in the sense that

$$
\blacktriangleright \int_{S^2 \setminus \Omega_i} |\nabla \omega_i|^2 \text{ and }
$$

 $\sum_{S^2 \setminus \Omega_i} |\nabla \omega_i|$ and
 \blacktriangleright the oscillation of ω_i over connected components of $S^2 \setminus \Omega_i$

are very small.

We can then say that a map v is close to such a collection of maps if

$$
\sum_i \int_{\Omega_i} |\nabla(v - \omega_i)|^2 \text{ is very small }.
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 $V \approx W_1$ $w_i \approx \text{const.}$ $j \neq 1$ on bult of domain $\cdot \circ$ ζ 2

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 $V \approx W_3$ $w_i \approx const$ j = 3 on bult of domain

KORK ERKER ADA ADA KORA

New gauge

Rigidity for maps of general degree? YES!

Theorem (R. '23)

Any degree k map v : $S^2\to S^2$ with small energy defect is close to a collection of rational maps ω_1,\ldots,ω_j , $j\geq 1$, with total degree k in the sense that

$$
\sum_i \int_{\Omega_i} |\nabla (v - \omega_i)|^2 \leq C \delta_v |\log \delta_v|
$$

for a partition of S^2 into sets Ω_i as above which are so that

$$
\int_{S^2\setminus\Omega_i}|\nabla\omega_i|^2\leq C\delta_{\mathbf{v}}^{2\alpha} \text{ and } \operatorname*{osc}_{\mathbf{v}}\omega_i\leq C\delta_{\mathbf{v}}^{\alpha}.
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Here $\alpha < \infty$ can be chosen as any number and $C = C(k, \alpha)$.

Rigidity for maps of general degree? YES!

Theorem (R. '23)

Any degree k map v : $S^2\to S^2$ with small energy defect is close to a collection of rational maps ω_1,\ldots,ω_j , $j\geq 1$, with total degree k in the sense that

$$
\sum_i \int_{\Omega_i} |\nabla (v - \omega_i)|^2 \leq C \delta_{\rm v} |\log \delta_{\rm v}|
$$

for a partition of S^2 into sets Ω_i as above which are so that

$$
\int_{S^2\setminus\Omega_i}|\nabla\omega_i|^2\leq C\delta_{\mathbf{v}}^{2\alpha} \text{ and } \operatorname*{osc}_{\mathbf{v}}\omega_i\leq C\delta_{\mathbf{v}}^{\alpha}.
$$

Here $\alpha < \infty$ can be chosen as any number and $C = C(k, \alpha)$.

This estimate is sharp!

I.e. there is no function that decays faster than $\phi(\delta) = \delta |\log \delta|$ for which the above estimate holds.

THANK YOU!

K ロ K K 伊 K K ミ K K E K H → C W E K + O Q Q Q

Ideas of proof: Simplest case

If energy is not concentrated on any small set \Rightarrow Topping's proof from $deg = \pm 1$ case applies, i.e.

 \blacktriangleright Evolve v by standard harmonic map flow

$$
\partial_t u = \tau_{g_{S^2}}(u) \text{ with } u(0) = v
$$

▶ Use that known Lojasiewicz estimate $\delta_u \leq C \|\tau_{g_{S^2}}(u)\|_{L^2(S^2,g_{S^2})}^2$ implies that

$$
||u(t) - u(0)||_{L^2} \leq \int_0^t ||\partial_t u||_{L^2} \leq C[E(t=0) - E(t)]
$$

to deduce that flow remains smooth for all times and evolves map to a single rational map $\omega = u(\infty)$ with well controlled energy density and

$$
\|\omega-v\|_{H^1}\leq C\delta_v.
$$

KORKARYKERKER POLO

Ideas of proof: Next simplest case

If energy is not too concentrated in the sense that all balls that contain a certain amount ε_1 of energy have radius at least

$$
r\geq \delta_v^{\alpha}
$$

then:

- ▶ Determine Möbius transforms M_i that scale up each such ball B_i to unit size
- ▶ Consider weighted metric $g = \sum M_i^* g_{S^2}$ and evolve v with weighted harmonic map flow
- \triangleright Show a Lojasiewicz estimate that involves such weighted metrics
- \blacktriangleright Flow will be well controlled as energy is not concentrated (wrt g) and converges to a rational map ω that is close to v.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Ideas of proof: General case

If energy concentrates at very different scales:

- $▶$ Partition domain into sets Ω_i that correspond to very different scales
- \triangleright For each *i*, consider weighted metric that rescales all parts of Ω_i that contain ε_1 of energy to unit size
- ▶ Flow to rational map $\tilde{\omega}_i$ that approximates v well on Ω_i but could be very concentrated elsewhere
- \triangleright Cut out highly concentrated parts to get new initial map that is still close to v on Ω_1

KORKARYKERKER POLO

 \blacktriangleright Flow again