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Basic questions for variational problems:

Given an energy E , what can we say about

▶ minimisers and critical points of E

▶ the energy spectrum

ΞE := {E (u) : u critical point }

▶ the behaviour of
▶ minimising sequences
▶ almost critical points
▶ gradient flow ∂tu = −∇E (u)



Are ”almost minimisers” almost given by minimisers?
If we know that the minimum of E is achieved, we can ask whether

E (u) ≈ Emin ⇒ u ≈ a minimiser ?

Qualitative version: Do we have

E (ui ) → minE ⇒ dist(ui , {minimisers}) → 0?

Quantitative version: Can we bound

dist2(u, {minimisers}) ≤ Cδαu

for energy defect δu = E (u) − Emin and some α > 0?

In past 20 years: Important results in many fields of geometry and
analysis, including Isoperimetric problems, spectral problems, Yamabe
problem, umbilical surfaces, Elasticity, Sobolev embeddings ...
(by Cianchi, Fusco, Maggi, Pratelli, Figalli, Novaga Capella, Otto, Müller,

Brasco, De Philippis, Conti, Dolzmann, De Lellis, Székelyhidi, Topping,

Engelstein, Neumayer, Spolaor, Lamm, Nguyen, Luckhaus, Zemas, ...)
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Almost Critical points:

If u ”almost solves” the Euler-Lagrange equation, i.e. is s.t. ∇E (u) ≈ 0,
does this imply that

▶ u is close to an exact solution, i.e. a critical point

▶ E (u) is close to a critical value?

Quantitative version =  Lojasiewicz estimates
Can we bound

dist(u, {cricital points}) ≤ C∥∇E (u)∥γ1

|E (u) − c∗| ≤ C∥∇E (u)∥γ2 ?

▶ Applications: Convergence of gradient flows, properties of energy
spectrum, Quantitative rigidity estimates

▶ For analytic energies in non-singular situations: Many results
known based on approach of L. Simon (’82)

▶ Few results that apply in singular situations:
harmonic maps S2 → S2 Topping ’04, Waldron’23
MCF: Colding-Minicozzi ’15, Chodosh-Schulze ’19
Optimal Sobolev embeddings: Figalli-Glaudo’19, Deng-Sun-Wei ’21
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Warm up: A simple energy:

Consider E : R → R

E (u) = cu2, for c > 0.

Then

δu := E (u) − Emin = cu2, dist = |u|, ∥∇E (u)∥ = 2c |u|.

so we have  Lojasiewicz estimates

|E (u) − c∗| ≤ C∥E (u)∥2 for critical value c∗ = E (0) = 0

∥u − u∗∥ ≤ C∥∇E (u)∥, for critical point u∗ = 0

and quantitative stability estimate

∥u − u∗∥ ≤ Cδ
1
2
u , for minimiser u∗ = 0
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Intuition:

In ”nice non-degenerate” situations, we might hope for  Lojasiewicz
estimates of the form

|E (u) − c∗| ≤ C∥E (u)∥γ1 for some c∗ ∈ ΞE := {E (u) : u ∈ C}
∥u − u∗∥ ≤ C∥∇E (u)∥γ2 , for some u∗ ∈ C := {u : ∇E (u) = 0}

for exponents γ1 = 2 and γ2 = 1, and quantitative stability estimate

∥u − u∗∥ ≤ Cδγ3
u , for some u∗ ∈ M := {u : E (u) = minE}

for γ3 = 1
2 .

If there are null-directions of d2E which do not correspond to tangential
directions to C resp. M and E is analytic then we might hope for such
estimates with smaller exponents.

▶ True for PDEs and Variational problems with good convexity
properties if there are NO SINGULARITIES, thanks to work of
 Lojasiewicz (’70s, finite dim) and Leon Simon (’83)



Intuition:

In ”nice non-degenerate” situations, we might hope for  Lojasiewicz
estimates of the form

|E (u) − c∗| ≤ C∥E (u)∥γ1 for some c∗ ∈ ΞE := {E (u) : u ∈ C}
∥u − u∗∥ ≤ C∥∇E (u)∥γ2 , for some u∗ ∈ C := {u : ∇E (u) = 0}

for exponents γ1 = 2 and γ2 = 1, and quantitative stability estimate

∥u − u∗∥ ≤ Cδγ3
u , for some u∗ ∈ M := {u : E (u) = minE}

for γ3 = 1
2 .

If there are null-directions of d2E which do not correspond to tangential
directions to C resp. M and E is analytic then we might hope for such
estimates with smaller exponents.

▶ True for PDEs and Variational problems with good convexity
properties if there are NO SINGULARITIES, thanks to work of
 Lojasiewicz (’70s, finite dim) and Leon Simon (’83)



Intuition:

In ”nice non-degenerate” situations, we might hope for  Lojasiewicz
estimates of the form

|E (u) − c∗| ≤ C∥E (u)∥γ1 for some c∗ ∈ ΞE := {E (u) : u ∈ C}
∥u − u∗∥ ≤ C∥∇E (u)∥γ2 , for some u∗ ∈ C := {u : ∇E (u) = 0}

for exponents γ1 = 2 and γ2 = 1, and quantitative stability estimate

∥u − u∗∥ ≤ Cδγ3
u , for some u∗ ∈ M := {u : E (u) = minE}

for γ3 = 1
2 .

If there are null-directions of d2E which do not correspond to tangential
directions to C resp. M and E is analytic then we might hope for such
estimates with smaller exponents.

▶ True for PDEs and Variational problems with good convexity
properties if there are NO SINGULARITIES, thanks to work of
 Lojasiewicz (’70s, finite dim) and Leon Simon (’83)



Dirichlet Energy and Harmonic maps

Let

▶ (Σ, g) be a closed surface

▶ (N, gN) a closed Riemannian manifold (any dimension)

A map u : Σ → N is harmonic if it is a critical point of

E (u) = 1
2

∫
Σ

|∇u|2, i.e. so that τg (u) := −∇L2

E (u) = 0.

Recall:

▶ tension τg (u) = tr(∇du) = ∆gu + A(u)(∇u,∇u) (for N ↪→ RM)

▶ E is conformally invariant wrt domain metric

▶ If u is (weakly) conformal and harmonic then it is a (branched)
minimal immersion

▶ For Σ = S2: Non-constant u is harmonic iff it is a (weakly)
conformal parametrisation of a (branched) minimial sphere
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Energy spectrum of harmonic maps

Conjecture (L. Simon ’90s, F.H. Lin ’99)
The energy spectrum

ΞE ((Σ, g),N) := {E (u) : u : (Σ, g) → N harmonic, not constant}

is discrete for every closed analytic manifold N.

For Σ = S2 equivalent to: Areas of minimal spheres in N are discrete

Known back then:
▶ True for very special cases where set of harmonic maps is known,

e.g. ΞE (S2,S2) = {4πk, k ∈ N}.

▶ For Σ = S2: E∗
N := inf Ξ(S2,N) > 0 is achieved and isolated

▶ Any potential accumulation point of ΞE needs to have the form
E (u∗) +

∑
i E (ωi ) for u∗ : Σ → N and ωi : S2 → N harmonic
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Formation of bubble trees: Compactness theory from 90’s:

▶ Sequences of almost harmonic maps ui , i.e. ui with ∥τ(ui )∥L2 → 0,
converge smoothly to a limit u∞ away from points where energy
concentrates

▶ any concentration of energy corresponds to formation of (at least
one) bubble, i.e. a highly scaled copy ω(µx) of a harmonic map
ω : R2 → N.
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concentrates

▶ concentration of energy must be caused by bubbling off of one or
more minimial sphere(s)



Formation of bubble trees: Compactness theory from 90’s:

▶ Sequences of almost harmonic maps ui , i.e. ui with ∥τ(ui )∥L2 → 0,
converge smoothly to a limit u∞ away from points where energy
concentrates

▶ concentration of energy must be caused by bubbling off of one or
more minimial sphere(s)

Remark:
If Σ = S2 and ”all the energy concentrates at one scale and near one
point”, i.e. if u∞ = const and only one bubble forms, then we can
pull-back by Möbius transforms to get smooth convergence.



Lowest candidate for accumulation point

First energy level where smooth convergence fails and hence result of
Simon does not apply:

▶ For Σ = S2:
2E∗

N = 2 inf ΞE (S2,N)

corresponding to sequences of maps that converge to a bubble tree
with non-trivial base map and a single bubble

▶ For Σ ̸= S2:
E∗
N = inf ΞE (S2,N)

corresponding to a sequence of maps that converges to a constant
away from a single point where a bubble forms



Results on energy spectrum:

Theorem (R.’21)
Let Σ ̸= S2 be any surface, and let N be any analytic manifold for which
the harmonic spheres with minimal energy are not branched.
Then E∗

N is not an accumulation point of ΞE (Σ,N).

Theorem (R.’23)
Let N be any analytic 3 manifold for which the harmonic spheres with
minimal energy are not branched and non-degenerate.
Then 2E∗

N is not an accumulation point of Ξ(Σ,N).

Get additional results on:

▶  Lojasiewicz estimates for maps that are close to corresponding
bubble trees

▶ Convergence of harmonic map flow in which such singularities form

▶ Results on gluing of two minimal spheres
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Basic idea of proof (Malchiodi-R.-Sharp ’20)

▶ Construct a finite dimensional manifold Z of singularity models that
are obtained by gluing a highly concentrated bubble onto a base
map

▶ Show that such singularity models can be constructed so that

▶ d2E is uniformly definite orthogonal to Z, i.e. so that the
Jacobi-operator on T⊥

z Z has a uniform eigenvalue gap around
λ = 0

▶ For each z ∈ Z which is not a critical point of E there is a
unit direction yz ∈ TzZ with

dE (z)(yz) ≫ ∥dE (z)∥2 + ∥dE (z)∥ · ∥d2E (z)(yz , ·)∥

▶ Get  Lojasiewicz estimates for free which tell us that

|E (u) − Ē | ≤ C∥τ(u)∥γL2 for Ē = E∗
N resp. Ē = 2E∗

N

for any map u that is close to such a bubble tree. In particular
E (u) = Ē if u is harmonic so ΞN can’t accumulate at Ē .



Rigidity of minimisers?

Suppose that Emin = injA E is achieved in some homotopy class A of
maps u : Σ → N and let M be the set of minimisers.

Question: Do almost minimisers, i.e. maps with small energy defect

δu = E (u) − Emin

”look like minimisers”?

I.e.

Does
δui → 0 imply distH1(ui ,M) → 0

and can we bound
dist2H1(u,M) ≤ Cδαu
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Rigidity of minimisers for maps from S2 to S2

In the special case of maps v : S2 → S2 we have

E (v) ≥ 4π| deg(v)|

with ” = ” iff v is a rational map, i.e. given by a meromorphic function

v̂ : Ĉ → Ĉ

in either z or z̄ in stereographic coordinates on both the domain and
target.

Question:
Can we bound the distance of maps v with degree k from the set of
degree k rational maps by the energy defect

δv := E (v) − 4π| deg(v)|?
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Rigidity for degree ±1 maps

Theorem
For any map v : S2 → S2 of degree ±1 there exists a Möbius transform
ω (in z or z̄) so that ∫

S2

|∇(v − ω)|2dvg ≤ Cδv .

▶ Due to Bernand-Mantel, Muratov and Simon (’19) in paper on ultra-thin
ferromagnetic films and skyrmions

▶ Simplified proofs by Topping (’20) and by Hirsch and Zemas (’20)

▶ Extension to higher dimensions: Guerra, Lamy, Zemas (’23)

Key aspect of degree 1 maps:

▶ Energy can only concentrate at a single point and scale

▶ {minimisers } = { symmetry group }
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Rigidity for maps of general degree?

▶ Deng-Sun-Wei (’21): Local result (where energy concentration is a
priori excluded) and conjecture of global quantitative rigidity
estimate

dist2H1(v ,Mk) ≤ Cδv | log δv |, δv = E (v) − 4πk

for

Mk = {degree k rational maps}

= { p(z)
q(z) : polynomials with max(deg(p), deg(q)) = k}

BUT as E (v) ≥ 4πk = 4π + . . . + 4π,

▶ Energy can concentrate at multiple scales/points

▶ Maps that describe behaviour on different ”microdomains” and/or
bulk might not match up as it is ”cheap” to transition between
different values on annuli with degenerating conformal structures
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Rigidity for maps of general degree? NO!

Rigidity of minimisers is WRONG even at qualitative level for any degree
k ≥ 2 as there exist vn : S2 → S2 of any degree k ≥ 2 with

δvn → 0 but dist(vn,Mk}) ↛ 0.

Counterexample (k=2, in stereographic coordinates):
Modify ω(z) = z + 1

µz , µ ≫ 1 by shifting by a constant a ̸= 0 on the
microdomain and using ”cheap” way to transition.
Resulting map vµ with

vµ(z) ≈ z away from 0

vµ(z) ≈ 1

µz
+ a for |z | ≤ Cµ−1

(1)

will be so that

▶ Distance from any rational map is ≳ |a|

▶ δ2vn ∼
|a|2
log µ → 0
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Rigidity for maps of general degree? Maybe...

Better (?) Question:

▶ Is every map v with small energy defect essentially described by a
collection of rational maps that describe the behaviour of v on bulk
and on different ”microdomains”?

▶ If so, can we bound the distance of v to such a collection of rational
maps in terms of the energy defect?



Distance of a single map to a collections of maps?

Let ω1, . . . , ωj be a collection of rational maps from S2 to S2.
These maps correspond to very different scales/concentration points if
there is a partition of S2 into sets Ωi so that

▶ all Ωi are obtained from balls by removing a finite number of balls
with far smaller radius

▶ ωi is essentially constant outside of Ωi in the sense that

▶
∫
S2\Ωi

|∇ωi |2 and

▶ the oscillation of ωi over connected components of S2 \ Ωi

are very small.

We can then say that a map v is close to such a collection of maps if∑
i

∫
Ωi

|∇(v − ωi )|2 is very small .
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Rigidity for maps of general degree? YES!

Theorem (R. ’23)
Any degree k map v : S2 → S2 with small energy defect is close to a
collection of rational maps ω1, . . . , ωj , j ≥ 1, with total degree k in the
sense that ∑

i

∫
Ωi

|∇(v − ωi )|2 ≤ Cδv | log δv |

for a partition of S2 into sets Ωi as above which are so that∫
S2\Ωi

|∇ωi |2 ≤ Cδ2αv and osc
v

ωi ≤ Cδαv .

Here α < ∞ can be chosen as any number and C = C (k, α).

This estimate is sharp!
I.e. there is no function that decays faster than ϕ(δ) = δ| log δ| for which
the above estimate holds.
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THANK YOU!



Ideas of proof: Simplest case

If energy is not concentrated on any small set ⇒ Topping’s proof from
deg = ±1 case applies, i.e.

▶ Evolve v by standard harmonic map flow

∂tu = τgS2 (u) with u(0) = v

▶ Use that known  Lojasiewicz estimate δu ≤ C∥τgS2 (u)∥2L2(S2,gS2 )

implies that

∥u(t) − u(0)∥L2 ≤
∫ t

0

∥∂tu∥L2 ≤ C [E (t = 0) − E (t)]

to deduce that flow remains smooth for all times and evolves map
to a single rational map ω = u(∞) with well controlled energy
density and

∥ω − v∥H1 ≤ Cδv .



Ideas of proof: Next simplest case

If energy is not too concentrated in the sense that all balls that contain a
certain amount ε1 of energy have radius at least

r ≥ δαv

then:

▶ Determine Möbius transforms Mi that scale up each such ball Bi to
unit size

▶ Consider weighted metric g =
∑

M∗
i gS2 and evolve v with weighted

harmonic map flow

▶ Show a  Lojasiewicz estimate that involves such weighted metrics

▶ Flow will be well controlled as energy is not concentrated (wrt g)
and converges to a rational map ω that is close to v .



Ideas of proof: General case

If energy concentrates at very different scales:

▶ Partition domain into sets Ωi that correspond to very different scales

▶ For each i , consider weighted metric that rescales all parts of Ωi

that contain ε1 of energy to unit size

▶ Flow to rational map ω̃i that approximates v well on Ωi but could
be very concentrated elsewhere

▶ Cut out highly concentrated parts to get new initial map that is
still close to v on Ω1

▶ Flow again


