Mean curvature flow with generic initial data

Felix Schulze, University of Warwick

Joint work with O. Chodosh (Stanford), K. Choi (KIAS, Seoul) and C. Mantoulidis (Rice)

> 16th Panhellenic Geometry Conference, Athens 27 September 2024

Outline

- (1) Background
- (2) Generic singularities
- (3) Perturbative results in \mathbb{R}^3
- (4) Perturbative results with low entropy

Background

Consider $(M^n(t))_{0\leq t<\tau}$ a smooth mean curvature flow of hypersurfaces in \mathbb{R}^{n+1} , i.e.

$$
\left(\frac{\partial F}{\partial t}\right)^{\perp} = \vec{H} = -H\nu = \Delta_{M(t)}F
$$

for a smooth family $F(\cdot,t)$ of parametrisations, and its space-time track

$$
\mathcal{M}=\cup_{0\leq t<\tau}\,M_t\times\{t\}\subset\mathbb{R}^{n+1}\times\mathbb{R}\,.
$$

Background

Basic properties:

- \blacktriangleright Gradient flow of area, geometric heat equation
- ▶ Quasi-linear parabolic: smooth short-time existence
- ▶ Avoidance principle: if $(M_1(t))_{0 \le t \le T}$ and $(M_2(t))_{0 \le t \le T}$ two solutions of mean curvature flow, then

$$
M_1(0) \cap M_2(0) = \emptyset \implies M_1(t) \cap M_2(t) = \emptyset
$$

- \blacktriangleright Finite existence time \rightsquigarrow singularities
- ▶ Convexity and mean convexity preserved
- ▶ Continuation through singularities as weak mean curvature flow, possibly non-unique

Background

Theorem (Gage-Hamilton ('86), Grayson ('87)): Curve shortening flow contracts a simple, closed curve in \mathbb{R}^2 in finite time to a 'round point'.

Theorem (Huisken ('84)): Mean curvature flow contracts a closed, convex hypersurface in \mathbb{R}^{n+1} in finite time to a 'round point'.

Problem: Singularities

Applications of mean curvature flow through singularities

- ▶ Classification of 2-convex surfaces (Huisken-Sinestrari ('09), Haslhofer-Kleiner ('17), Brendle-Huisken ('16, '17))
- ▶ Topology of moduli space of 2-convex surfaces (Buzano-Haslhofer-Hershkovits ('16, '17))
- ▶ Constructing new minimal surfaces (Haslhofer-Ketover ('19))
- ▶ Schoenflies problem for low-entropy 3-spheres (Bernstein-Wang ('20), Choi-Chodosh-Mantoulidis-Schulze ('20,'21), Daniels-Holgate ('21))
- \blacktriangleright Isoperimetric inequalities (Hershkovits ('17), Schulze ('20))
- \triangleright Structure of 3-d manifolds with positive scalar curvature (Liokumovich-Maximo ('20))

Monotonicity formula: backwards heat kernel based at $X_0 = (x_0, t_0)$:

$$
\rho_{X_0}(x,t)=\tfrac{1}{(2\pi(t_0-t))^{n/2}}e^{-\frac{|x-x_0|^2}{4(t_0-t)}},
$$

then

$$
\frac{d}{dt}\int_{M_t} \rho_{X_0} d\mathcal{H}^n \leq -\int_{M_t} \left|\vec{H} + \frac{(x - x_0)^{\perp}}{2(t_0 - t)}\right|^2 \rho_{X_0} d\mathcal{H}^n
$$

Tangent flows: Consider $\mathcal{D}_\lambda: (x,t) \mapsto (\lambda x, \lambda^2 t)$ and $\lambda_i \to +\infty$, then subsequentially

$$
\mathcal{D}_{\lambda_i}(\mathcal{M}-X_0)\rightharpoonup \mathcal{M}'.
$$

and by the monotonicity formula $\mathcal{D}_{\lambda}(\mathcal{M}' \cap \{t < 0\}) = \mathcal{M}' \cap \{t < 0\}$, i.e.

$$
\mathcal{M}'(t) = \sqrt{-t} \cdot \Sigma
$$

and Σ satisfies

$$
\vec{H}=-\frac{x^{\perp}}{2}.
$$

We call such a Σ a self-shrinker.

Examples:

- ▶ Plane: $\mathbb{R}^n \subset \mathbb{R}^{n+1}$
- ▶ Sphere: $\mathbb{S}_{\sqrt{2n}}^n \subset \mathbb{R}^{n+1}$
- ▶ (Generalized) cylinders: $\mathbb{S}^{n-k}_{\sqrt{2(n-k)}} \times \mathbb{R}^k \subset \mathbb{R}^{n+1}$ for $k = 1, \ldots, n-1$
- ▶ Huisken ('90): If $H > 0$ (which is preserved under the evolution), then these are the only possibilities.
- ▶ Angenent ('89): torus of revolution
- ▶ Kapouleas-Kleene-Møller ('11), X.H. Nguyen ('11): desingularisation of $\mathbb{R}^2 \cup \mathbb{S}_2^2$

Tom Ilmanen's conjectural shrinker of genus 8 with 9 Scherk handles

(picture used with his permission)

Monotonicity formula and tangent flows

Structure of self-shrinkers:

- \triangleright lim_λ ∖, 0 λ · Σ = C_{∞} asymptotic cone (as sets)
- \triangleright We call Σ *asymptotically conical* if C_{∞} and convergence smooth
- $▶$ L. Wang ('16): $\Sigma^2 \subset \mathbb{R}^3$ embedded with finite genus $\Rightarrow \Sigma^2$ has only cylindrical or smoothly conical ends ('16)
- S. Brendle ('16): the only embedded genus zero shrinkers in \mathbb{R}^3 are the sphere and the cylinder

Generic singulartities

Fundamental issue:

Zoo of singularities, no hope of classification

Genericity principle:

Generic solutions, obtained by small perturbations of the initial data, exhibit simpler singularities.

Conjecture (Huisken):

A generic mean curvature flow in \mathbb{R}^3 has only spherical and cylindrical singularities

Colding-Minicozzi ('12):

▶ The only linearly stable singularity models are spheres and (generalised) cylinders

Question:

- \blacktriangleright How to perturb away unstable singularity models?
- \blacktriangleright Perturb only the initial condition, past singularities?

Perturbative results

Theorem 1 (CCMS ('20), CCS ('23)): Let $M^{\circ} \subset \mathbb{R}^{3}$ be a closed embedded surface. There exist arbitrary small C ${}^{\infty}$ graphs M over M ${}^{\circ}$ so that mean curvature flow starting at $M(0) := M$ has only spherical and cylindrical singularities for as long as its singularities have multiplicity one.

Problem: Multiplcity

Convergence of the surfaces M_i with multiplicity two to the dotted surface N, while "necks" are pinching off.

Perturbative results

Theorem (Bamler – Kleiner ('23)): For closed embedded surfaces $M(0) \subset \mathbb{R}^3$, mean curvature flow has only singularities with multiplicity one at the first non-generic time.

Corollary: Let $M^{\circ} \subset \mathbb{R}^{3}$ be a closed embedded surface. There exist arbitrary small C^∞ graphs M over M $^\circ$ so that mean curvature flow starting at $M(0) := M$ has only multiplicity one spherical and cylindrical singularities.

Remarks:

- \triangleright A (weak) mean curvature flow with only multiplcity one generic singularities is unique.
- \blacktriangleright The space of (weak) mean curvature flows with only multiplicity one generic singularities is open. Thus the set of M in the theorem above is both dense and open.

Flows with surgery

Surgery:

- ▶ Close to a cylindrical singularity, replacing a cylindrical piece by two spherical caps.
- ▶ Surgery for mean curvature flow of 2-convex surfaces (Huisken-Sinestrari ('09), Haslhofer-Kleiner ('17), Brendle-Huisken ('16, '17))

Theorem (Daniels-Holgate ('21)): Any (weak) mean curvature flow with only spherical and cylindrical singularities starting from a smooth closed embedded hypersurface $M^2\subset \mathbb{R}^3$ can be approximated by smooth flows with surgery.

Corollary: Let $M^{\circ} \subset \mathbb{R}^{3}$ be a closed embedded surface. There exist arbitrary small C^∞ graphs M over M $^\circ$ and a smooth mean curvature flow with surgery starting from M.

Strategy of proof of Theorem 1

- ▶ Consider $M_0 \subset \mathbb{R}^{n+1}$ a fixed hypersurface, \mathcal{M}_0 a weak mean curvature flow starting at M_0 .
- ▶ Consider a foliation ${M_s}_{s∈(-1,1)}$ around M_0 . Embedd the flow M_0 into a family of (weak) flows M_s starting at M_s .
- ▶ Avoidance principle: $\mathcal{M}_s(t) \cap \mathcal{M}_{s'}(t) = \emptyset$ for $s \neq s'$.
- ▶ Consider (x_0, t_0) a singular point of \mathcal{M}_0 and $\lambda_i \rightarrow \infty$ such that ${\mathcal D}_{\lambda_i}(\mathcal M_0-(x_0,t_0))\rightharpoonup \mathcal M',$ a tangent flow at $X.$
- ▶ Pass the whole foliation to the limit simultaneously, i.e. consider the flows ${\mathcal{D}_{\lambda}}_i({\mathcal{M}}_s-({\mathsf{x}}_0,t_0))$ as $\lambda_i\to\infty.$
- ▶ Choosing $s_i \setminus 0$ carefully as $\lambda_i \to \infty$, up to a subsequence, ${\mathcal{D}}_{\lambda_i}({\mathcal{M}}_{\boldsymbol{s}_i} - (\text{x}_0, t_0))$ will converge to a non-empty flow ${\mathcal{M}}$ that stays on one side of the original tangent flow M' and is ancient.
- ▶ Show that \overline{M} is unique up to parabolic scaling, moves in a rescaled sense in one direction \Rightarrow thus has only spherical and cylindrical singularities and has genus zero near (0, 0).
- \triangleright Use this to find a choice of s small so that \mathcal{M}_s has only spherical and cylindrical singularities near (x_0, t_0) and strictly drops genus.
- Iterate this.

Entropy (Colding-Minicozzi)

$$
\lambda(M) := \sup_{x_0 \in \mathbb{R}^{n+1}, t_0 > 0} \int_M (4\pi t_0)^{-n/2} e^{-\frac{|x - x_0|^2}{4t_0}} d\mu
$$

 \triangleright $t \mapsto \lambda(M_t)$ monotonically decreasing under mean curvature flow

Classification of surfaces of low entropy:

$$
\blacktriangleright \ \lambda(\mathbb{S}^n) = \mathcal{F}(\mathbb{S}_{\sqrt{2n}}^n) < \lambda(\mathbb{S}^{n-1} \times \mathbb{R}) < \cdots < \lambda(\mathbb{S}^1 \times \mathbb{R}^{n-1}) = \mathcal{F}(\mathbb{S}_{\sqrt{2}}^1)
$$

- ▶ Colding-Ilmanen-Minicozzi-White ('13): the round sphere $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ has lowest entropy among non-planar self-shrinkers.
- \triangleright Bernstein-Wang ('16) (Zhu ('20)): the round sphere has lowest entropy among all closed hypersurfaces.
- Bernstein-Wang ('18): $\mathbb{S}^1 \times \mathbb{R}$ has second least entropy among non-planar self-shrinkers in \mathbb{R}^3 .
- ► Bernstein-Wang ('18): $M^3 \subset \mathbb{R}^4$ closed and $\lambda(M) \le \lambda(\mathbb{S}^2 \times \mathbb{R}) \Rightarrow M$ diffeomorphic to \mathbb{S}^3 .

Perturbative results with low entropy

Theorem 2 (CMS ('23)): If $M^3\subset \mathbb{R}^4$ is a closed embedded hypersurface with entropy $\lambda(M)\leq 2$ then there exist arbitrarily small \textsf{C}^{∞} graphs M' over M such that the mean curvature flow starting from M′ has only multiplicity-one singularities of $\mathbb{S}^3, \mathbb{S}^2 \times \mathbb{R}$, and $\mathbb{S}^2 \times \mathbb{R}^2$ -type.

Remark:

- ▶ In this low entropy setting we can work globally in space-time, and without the classification of ancient one sided flows.This is replaced by a (softer) infinitesimal version for tangent flows, together with separation estimates (i.e. growth estimates for Jacobi fields) and a refined covering argument.
- \triangleright Geometric measure theory yields that area minimizing hypersurfaces $M^n \subset \mathbb{R}^{n+1}$ are smooth for $n+1 \leq 7$ and for $n+1 \geq 8$ have a singular set of dimension at most $n - 7$. With similar techniques we have been able to show that area minimizing hypersurfaces in \mathbb{R}^{n+1} for $n+1=8,9,10$ are generically smooth (for $n + 1 = 8$ this is originally due to Hardt–Simon $('85)$).

Low entropy Schoenflies theorem

Schoenflies conjecture:

Any smoothly embedded $S^3\subset \mathbb{R}^4$ bounds a smooth 4-ball.

Corollary (CCMS ('20, '21)): If $M^3 \subset \mathbb{R}^4$ has entropy $\lambda(M) \leq \lambda(\mathbb{S}^2 \times \mathbb{R})$, then after a small C^{∞} -perturbation to a nearby hypersurface M' , the mean curvature flow M′ (t) is completely smooth until it disappears in a round point.

This yields an alternate proof of the low entropy Schoenflies theorem of Bernstein-Wang:

Theorem (Bernstein-Wang ('20)): If $M^3\subset \mathbb{R}^3$ has entropy $\lambda(M)\leq \lambda(\mathbb{S}^2\times \mathbb{R})$ then M is smoothly isotopic to the round \mathbb{S}^3 .

Combining Theorem 2 with the approximation result by Daniels-Holgate we can improve this further:

Corollary (CCMS, Daniels-Holgate ('21)): Any smoothly embedded $M^3\subset \mathbb{R}^4$ which is homeomorphic to \mathbb{S}^3 and has entropy $\lambda(M) \le \lambda(\mathbb{S}^1 \times \mathbb{R}^2)$ is smoothly isotopic to the round \mathbb{S}^3 .

Thank you!