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Background

Consider (Mn(t))0≤t<T a smooth mean curvature flow of hypersurfaces in
Rn+1, i.e. (

∂F

∂t

)⊥

= H⃗ = −Hν = ∆M(t)F

for a smooth family F (·, t) of parametrisations, and its space-time track

M = ∪0≤t<TMt × {t} ⊂ Rn+1 × R .

Mean curvature H = λ1 + · · ·+ λn

(Source: Wikipedia)
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Background

Basic properties:

▶ Gradient flow of area, geometric heat equation

▶ Quasi-linear parabolic: smooth short-time existence

▶ Avoidance principle: if (M1(t))0≤t<T and (M2(t))0≤t<T two solutions of
mean curvature flow, then

M1(0) ∩M2(0) = ∅ =⇒ M1(t) ∩M2(t) = ∅

▶ Finite existence time ⇝ singularities

▶ Convexity and mean convexity preserved

▶ Continuation through singularities as weak mean curvature flow, possibly
non-unique
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Background

Theorem (Gage-Hamilton (’86), Grayson (’87)): Curve shortening flow
contracts a simple, closed curve in R2 in finite time to a ’round point’.

Theorem (Huisken (’84)): Mean curvature flow contracts a closed, convex
hypersurface in Rn+1 in finite time to a ’round point’.

Problem: Singularities
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Applications of mean curvature flow through singularities

▶ Classification of 2-convex surfaces (Huisken-Sinestrari (’09),
Haslhofer-Kleiner (’17), Brendle-Huisken (’16, ’17))

▶ Topology of moduli space of 2-convex surfaces
(Buzano-Haslhofer-Hershkovits (’16, ’17))

▶ Constructing new minimal surfaces (Haslhofer-Ketover (’19))

▶ Schoenflies problem for low-entropy 3-spheres (Bernstein-Wang (’20),
Choi-Chodosh-Mantoulidis-Schulze (’20,’21), Daniels-Holgate (’21))

▶ Isoperimetric inequalities (Hershkovits (’17), Schulze (’20))

▶ Structure of 3-d manifolds with positive scalar curvature
(Liokumovich-Maximo (’20))
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Monotonicity formula: backwards heat kernel based at X0 = (x0, t0):

ρX0(x , t) =
1

(2π(t0−t))n/2
e
− |x−x0|

2

4(t0−t) ,

then

d

dt

∫
Mt

ρX0 dH
n ≤ −

∫
Mt

∣∣∣H⃗ +
(x − x0)

⊥

2(t0 − t)

∣∣∣2ρX0 dH
n

Tangent flows: Consider Dλ : (x , t) 7→ (λx , λ2t) and λi → +∞, then
subsequentially

Dλi (M− X0) ⇀ M
′ .

and by the monotonicity formula Dλ(M
′ ∩ {t < 0}) = M′ ∩ {t < 0}, i.e.

M
′(t) =

√
−t · Σ

and Σ satisfies

H⃗ = −x⊥

2
.

We call such a Σ a self-shrinker.
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Examples:

▶ Plane: Rn ⊂ Rn+1

▶ Sphere: Sn√
2n

⊂ Rn+1

▶ (Generalized) cylinders: Sn−k√
2(n−k)

× Rk ⊂ Rn+1 for k = 1, . . . , n − 1

▶ Huisken (’90): If H ≥ 0 (which is preserved under the evolution), then
these are the only possibilities.

▶ Angenent (’89): torus of revolution

▶ Kapouleas-Kleene-Møller (’11), X.H. Nguyen (’11): desingularisation of
R2 ∪ S2

2
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Tom Ilmanen’s conjectural shrinker of genus 8 with 9 Scherk handles
(picture used with his permission)
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Monotonicity formula and tangent flows

Structure of self-shrinkers:

▶ limλ↘0 λ · Σ = C∞ asymptotic cone (as sets)

▶ We call Σ asymptotically conical if C∞ and convergence smooth

▶ L. Wang (’16): Σ2 ⊂ R3 embedded with finite genus ⇒ Σ2 has only
cylindrical or smoothly conical ends (’16)

▶ S. Brendle (’16): the only embedded genus zero shrinkers in R3 are the
sphere and the cylinder
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Generic singulartities

Fundamental issue:

Zoo of singularities, no hope of classification

Genericity principle:

Generic solutions, obtained by small perturbations of the initial data, exhibit
simpler singularities.

Conjecture (Huisken):

A generic mean curvature flow in R3 has only spherical and cylindrical
singularities

Colding-Minicozzi (’12):

▶ The only linearly stable singularity models are spheres and (generalised)
cylinders

Question:

▶ How to perturb away unstable singularity models?

▶ Perturb only the initial condition, past singularities?
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Perturbative results

Theorem 1 (CCMS (’20), CCS (’23)): Let M◦ ⊂ R3 be a closed embedded
surface. There exist arbitrary small C∞ graphs M over M◦ so that mean
curvature flow starting at M(0) := M has only spherical and cylindrical
singularities for as long as its singularities have multiplicity one.

Problem: Multiplcity

Mi

N

Convergence of the surfaces Mi with multiplicity two to the dotted surface N,
while “necks” are pinching off.
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Perturbative results

Theorem (Bamler – Kleiner (’23)): For closed embedded surfaces M(0) ⊂ R3,
mean curvature flow has only singularities with multiplicity one at the first
non-generic time.

Corollary: Let M◦ ⊂ R3 be a closed embedded surface. There exist arbitrary
small C∞ graphs M over M◦ so that mean curvature flow starting at
M(0) := M has only multiplicity one spherical and cylindrical singularities.

Remarks:

▶ A (weak) mean curvature flow with only multiplcity one generic
singularities is unique.

▶ The space of (weak) mean curvature flows with only multiplicity one
generic singularities is open. Thus the set of M in the theorem above is
both dense and open.
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Flows with surgery

Surgery:

▶ Close to a cylindrical singularity, replacing a cylindrical piece by two
spherical caps.

▶ Surgery for mean curvature flow of 2-convex surfaces (Huisken-Sinestrari
(’09), Haslhofer-Kleiner (’17), Brendle-Huisken (’16, ’17))

Theorem (Daniels-Holgate (’21)): Any (weak) mean curvature flow with only
spherical and cylindrical singularities starting from a smooth closed embedded
hypersurface M2 ⊂ R3 can be approximated by smooth flows with surgery.

Corollary: Let M◦ ⊂ R3 be a closed embedded surface. There exist arbitrary
small C∞ graphs M over M◦ and a smooth mean curvature flow with surgery
starting from M.
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Strategy of proof of Theorem 1

▶ Consider M0 ⊂ Rn+1 a fixed hypersurface, M0 a weak mean curvature flow
starting at M0.

▶ Consider a foliation {Ms}s∈(−1,1) around M0. Embedd the flow M0 into a
family of (weak) flows Ms starting at Ms .

▶ Avoidance principle: Ms(t) ∩Ms′(t) = ∅ for s ̸= s ′.

▶ Consider (x0, t0) a singular point of M0 and λi → ∞ such that
Dλi (M0 − (x0, t0)) ⇀ M′, a tangent flow at X .

▶ Pass the whole foliation to the limit simultaneously, i.e. consider the flows
Dλi (Ms − (x0, t0)) as λi → ∞.

▶ Choosing si ↘ 0 carefully as λi → ∞, up to a subsequence,
Dλi (Msi − (x0, t0)) will converge to a non-empty flow M that stays on one
side of the original tangent flow M′ and is ancient.

▶ Show that M is unique up to parabolic scaling, moves in a rescaled sense
in one direction ⇒ thus has only spherical and cylindrical singularities and
has genus zero near (0, 0).

▶ Use this to find a choice of s small so that Ms has only spherical and
cylindrical singularities near (x0, t0) and strictly drops genus.

▶ Iterate this.
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Entropy (Colding-Minicozzi)

λ(M) := sup
x0∈Rn+1,t0>0

∫
M

(4πt0)
−n/2e

− |x−x0|
2

4t0 dµ

▶ t 7→ λ(Mt) monotonically decreasing under mean curvature flow

Classification of surfaces of low entropy:

▶ λ(Sn) = F (Sn√
2n
) < λ(Sn−1 × R) < · · · < λ(S1 × Rn−1) = F (S1√

2
)

▶ Colding-Ilmanen-Minicozzi-White (’13): the round sphere Sn ⊂ Rn+1 has
lowest entropy among non-planar self-shrinkers.

▶ Bernstein-Wang (’16) (Zhu (’20)): the round sphere has lowest entropy
among all closed hypersurfaces.

▶ Bernstein-Wang (’18): S1 × R has second least entropy among non-planar
self-shrinkers in R3.

▶ Bernstein-Wang (’18): M3 ⊂ R4 closed and λ(M) ≤ λ(S2 × R) ⇒ M
diffeomorphic to S3.
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Perturbative results with low entropy

Theorem 2 (CMS (’23)): If M3 ⊂ R4 is a closed embedded hypersurface with
entropy λ(M) ≤ 2 then there exist arbitrarily small C∞ graphs M ′ over M such
that the mean curvature flow starting from M ′ has only multiplicity-one
singularities of S3, S2 × R, and S2 × R2-type.

Remark:

▶ In this low entropy setting we can work globally in space-time, and without
the classification of ancient one sided flows.This is replaced by a (softer)
infinitesimal version for tangent flows, together with separation estimates
(i.e. growth estimates for Jacobi fields) and a refined covering argument.

▶ Geometric measure theory yields that area minimizing hypersurfaces
Mn ⊂ Rn+1 are smooth for n+ 1 ≤ 7 and for n+ 1 ≥ 8 have a singular set
of dimension at most n − 7. With similar techniques we have been able to
show that area minimizing hypersurfaces in Rn+1 for n + 1 = 8, 9, 10 are
generically smooth (for n + 1 = 8 this is originally due to Hardt–Simon
(’85)).
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Low entropy Schoenflies theorem

Schoenflies conjecture:

Any smoothly embedded S3 ⊂ R4 bounds a smooth 4-ball.

Corollary (CCMS (’20, ’21)): If M3 ⊂ R4 has entropy λ(M) ≤ λ(S2 × R), then
after a small C∞-perturbation to a nearby hypersurface M ′, the mean
curvature flow M ′(t) is completely smooth until it disappears in a round point.

This yields an alternate proof of the low entropy Schoenflies theorem of
Bernstein-Wang:

Theorem (Bernstein-Wang (’20)): If M3 ⊂ R3 has entropy λ(M) ≤ λ(S2 × R)
then M is smoothly isotopic to the round S3.

Combining Theorem 2 with the approximation result by Daniels-Holgate we can
improve this further:

Corollary (CCMS, Daniels-Holgate (’21)): Any smoothly embedded M3 ⊂ R4

which is homeomorphic to S3 and has entropy λ(M) ≤ λ(S1 × R2) is smoothly
isotopic to the round S3.
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Thank you!
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