Stability aspects of the Mo6bius group of S"!
and bubbles of the (2-dim) H-system

Konstantinos Zemas
UNIVERSITAT

Hausdorff Center for Mathematics, University of Bonn

16th Panhellenic Geometry Conference
National Kapodistrian University of Athens

Athens, Greece, 29.09.2024



Talk based on the following works:

S. LuckHAus, K. ZEMAS. Rigidity estimates for isometric and conformal
maps from S""! to R", INVENTIONES MATHEMATICAE 230(1) (2022),
375-461.

J. HirscH, K. ZEMAS. A note on a rigidity estimate for degree +1
conformal maps on S?>. BULLETIN OF THE LONDON MATHEMATICAL
SOCIETY 54(1) (2022), 256—263.

A. GUERRA, X. LAMY, K. ZEMAS. Sharp quantitative stability of the
Mobius group among sphere-valued maps in arbitrary dimension, to appear in
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY (2024),
arXiv: 2305.19886.

A. GUERRA, X. Lamy, K. ZEMAS. Optimal Quantitative Stability of the
Mébius group of the sphere in all dimensions, under review (2024), arXiv:
2401.06593.

A. GUERRA, X. Lamy, K. ZEMAS. On the existence of degenerate
solutions of the two-dimensional H-system (2024), arXiv: 2409.18068



Liouville’s rigidity theorem as a differential inclusion

o (For isometries)

Let n > 2, U C R” be a bounded Lipschitz domain. If u € WH2(U;R") is s.t.
Vu € SO(n) ae. inU,
then u is a rigid motion, i.e., u(x) = Rx + b, where R € SO(n),b € R".

o (For conformal maps) )

Let n >3, U as above. If u € W»"(U;R") is s.t.
Vu € R:SO(n) ae. in U, & S0()

then u is a Mdbius map, i.e.,

X —a +b7

u(x) IAB|X73‘ - o

where y =0 or 2, A€ R;S50(n), B =diag(l,...,—-1), acR"\U,beR".

Liouville (C3), Reshetnyak (W), Iwaniec (WP, 5 <pn<p<n),
Iwaniec-Martin (sharp p, = 5 for n even, same is conjectured for n odd!)



Liouville’s theorem for conformal maps on S"=1, n >3
p

An orientation preserving/reversing u € W"~1(S"7; S""!) of degree 1/-1 is
generalized conformal, i.e.,

|V rul®

Vru'Vru= 1 Ik H" 'ae onS"!,

iff it is a Mobius transformation of 8”72, i.e.,
u= O¢e = O(Ug1 0 i\ 0 0¢)
for some O € O(n), £ €S" ! and A > 0.

Here, o is the stereographic projection from —¢ € S~ onto T¢S"~* U {0}, and
ix is the dilation in T¢S"~! by factor A > 0.
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New proof on S""! (G.O.P. conformal, deg=1)
o Given u € W (S" 18" 1) of degree 1, 3 deyng: fun1 U0 heging = 0.
o The map i := uo ¢¢y,x, of mean value 0, is also G.O.P.C. of degree 1.

© By conformality of i,
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o Equality in the sharp L>-Poincaré on S"™! = ii(x) = Rx for R € R™" (via
expansion in spherical harmonics).

n—

1
2

— | #H(du) = deg(@) = 1,
Snfl

hence,

o Since i#(S"7') = S"! and deg(ii) = 1, we deduce that R € SO(n).



Theorem (An optimal quantitative extension for S"~1-valued maps)
For every u € Wh""1(S"1;8"!) (with degu := £, 1 (u, A1 Ou) = 1),

n—1
2 2
inf ][ |Vru— V5" < <][ (‘VT“‘ ) —1>.
$EMob, (S"=1) Jgn—1 g1\ n—1

© n = 3: Mantel-Muratov-Simon ('21, ARMA), Hirsch-Z. ('22, Bull. of LMS),
Topping ('23, Bull. of LMS).

© Maps of degree k > 2: Rupflin ('23). The optimal estimate is of the form
dlbtwl 2(u, R) < 6u(|log(du)| + 1), ][ Vru?2—-k>0,

and R describes collections of rational maps at very different scales.

k=% :

o n>4: Guerra-Lamy-Z. ('24, TAMS).



Flexibility vs Rigidity of Isometric and Conformal maps from S"! to R”

o Classical rigidity in the Weyl problem for isometric embeddings: The only
C? isometric embeddings of S"~! into R” are rigid motions.

¢ Flexibility via the celebrated Nash-Kuiper theorem: For every arbitrarily
small ball Bs, there exist C' isometric embeddings wrinkling S"~* inside Bs.

(=e

o For conformal maps from S"~! to R”, other examples that are not Mdbius are
also (when n = 3) used in cartography (Jacobi's conformal map projection),
others are provided by the Uniformization Theorem, ...

a conformal
g T Ee

o Liouville’s rigidity theorem on S"~! on one hand, and the above flexibility
phenomena on the other, indicate that an extra deficit for the deviation of
u(S"™1) from being a round sphere is necessary for the stability of its isometry
(resp. conformal) group among low regularity maps from S"~* into R".



Stability in the conformal case, n > 3

If u e WhHH(S™ 1 R"), then

2\ "I (AM.—G.M.) (1.1 E& "
fsn—l <%> > ]inil det (VrutVru) > ]éwl (u, {\1 Oru)
=0,71(0) T
o “="in AM.-G.M. iff u is generalized conformal from S"~! to R".
o “="in LL iff u(S""!) C 8B,(x0) H " -a.e. on {J(u) #0}; r > 0,x € R".

“="in both = wu is a conformal solution to the H-system

Ap_ru+HyJ(u)=0 onS"", H,:=(n—1) E D\n/;i(ll(l;l) ;

hence C*** (Mou-Yang '96, J. Geom. Anal.) = ... modulo translation and
rescaling is a conformal self-map of S"~! of degree +1, i.e., is Mdbius.



¢ Thus, the quantity

provides the correct deficit for stability of the Mdbius group of S"~! among
maps into R".

Theorem (Optimal nonlinear stability)

For every u € W"71(S"7; R") there holds

1 n—1
WVTU—VT¢‘ ,SE,,,l(u).
ny)|n

inf 7[
EMob(S"—1) Jgn—1

o For n = 3: Luckhaus-Z. ('22, Invent. Math.) + linear stability Vn > 3,
leading to the nonlinear estimate in the W' *-vicinity of Mob(S™?).

o For n > 4: Guerra-Lamy-Z. ('24).

o The result implies the estimate for S" *-valued maps of degree +1, making it
optimal in terms of scaling.



The (related) 2-dim H-functional

o Consider the functional F : H*(R?* R®) — R defined by

1 2
F(u) = 5 /]Rz |Vul>dL? + 3 /2(u7 e A uy) dL? .
. Jr

o Relation to CMC-surfaces: The critical points w € H'(R? R®) (bubbles);
Aw =2wx Awy in D’(RQ)

are (branched) conformal parametrizations of unit spheres.

© Brezis-Coron ('84, ARMA) classified all such bubbles as
_ (P
=7 (o) + o

where P, Q € C[z], b € R3, m: C — S? is the inverse stereographic
projection. If P/Q is irreducible and k := max{deg P, deg Q}, then

%/ |Vw|?dL? = 4k
R2

They also proved a bubbling compactness result for Palais-Smale sequences.



Studying F near its critical points
The linearized operator F”(w) : H* — H™* around a bubble w is
F'(W)[u] = —Au+2(ux Awy + wx A uy).
Since for some k € N we can identify
w € My = {(P,Q,b) € C[z] x C[z] x R*: P monic, max{deg P,deg Q} = k},
infinitesimal variations tangent to My produce elements in ker 7" (w), so that

dimkerF"(w) > 4k +5.

A bubble w is non-degenerate, if all elements in kerF"'(w) arise in this way.

Isobe (91, Adv. Diff. Eq.), Chanillo-Malchiodi ('05, Comm. Anal. Geom.):
Bubbles of degree 1 are non-degenerate.

Sire-Wei-Zheng-Zhou ('23): The standard k-bubble, k > 2, corresponding to
P(z) = z¥ and Q(z) =1, is non-degenerate as well.

Conjecture/Guess in these works: All bubbles are non-degenerate!



Theorem (Guerra-Lamy-Z., '24): This is not always the case!

Let w: S — R> be a bubble whose set of branch points is
{|Vw| - 0} = {p17 et 7Pn}-
Then w is degenerate iff 3 a non-zero polynomial R € C[z] with deg R < n — 4:

o= 56 es 7h = or j n
h(z) := R e R“”((P/ )/> 0 forje{l,...,n}.

© The result is based on the characterization of extra eigenfunctions to
Af + |V’ f =0,
Montiel-Ros (90, Conf. Proc. Berlin), Ejiri-Kotani ('93, Tokyo J. Math.).

o Every degenerate bubble needs to have at least 4 branch points!
o Every bubble of degree k < 2 is non-degenerate!

o For k = 3, the only degenerate bubble is (up to a Mdbius transformation)

P(z)=2+2, Qz)=z.



Proof of nonlinear stability from S"! to R”, n =3

© By a contradiction/compactness argument it suffices to prove the
W 2_local version of the theorem, i.e., prove it for maps with

(N fou=0, folux)=1,
(i &w)<k1,

(iit) IVt — Pl < 1.

o For such maps, setting w := u — id and expanding the deficit, we get

Q) +o(f,1vrwl).

o For n >4, if uis Wh*°—close to id, we get

E(u)

n—1

Ers() = Quw)+ 0 (£ [7ruf)



Linear stability in the conformal case, n > 3

Q) =5 £ (19t + IS ivg ) = 5 (woaw)).
where

A(w) = (divge—1w)x — ZXJ-VTWj,

Jj=1

considered in the space

H, ::{WEWI’Z(Snil;Rn)if w=0, ][ <W,X>:0}-
n—1 sn—1

Theorem (Luckhaus-Z., Linear stability, n > 3)

There exists C, > 0 such that Vw € H,,

Qn(W) > Cn][ |VTW—VT(|-|",0W)|2,
n—1

S

where M, : H, — Hypo is the W'2-orthogonal projection on the kernel
Hpo = mob(n — 1) of Q, in H, (of dimension n(n+ 1)/2).



o When n = 3, the optimal constant can be calculated explicitely.

o Linear stability = Nonlinear stability, via an application of an Inverse
Function Theorem and a topological argument allowing us to find

¢ € Mob,(S%) st. Mzg(uog)=0.

© The linear estimate is based on the fine interplay between A and —Agn—1:

Lemma (A-eigenvalue decomposition of spherical harmonics)

(i)Forn>3, k>1, let

Hpk = {W € Hy: — Agaw =XApiw, Mok :i=k(k+n— 2)} .
The L? self-adjoint operator A(w) leaves Hy k sol 5 H,fkysol invariant, where
Hp.ks01 :={w € Hpx : divw, =0 in Bi}.
(ii) For every k > 1,
Hyksol = Hoka ® Hoko,  Hoksol = Hokos,

where (Hpk,i)i; are the eigenspaces of A w.r.t. the eigenvalues —k,1,k +n — 2
respectively.



Sketch of proof, n > 4

o Reduce to u satisfying (i) — (iii), Mpo(u) =0, via the qualitative version:

Proposition (Strong compactness of minimizing sequences)
If £,—1(uj) — 0, then U.T.S. there exist (¢;)jex C Mob(S"™!) and O € O(n) s.t.

Uj 0 ¢j — fon1 Uj 0 b
| V() [/

— 0id strongly in W™ 1(S" 1 R").

o n = 3: Brezis-Coron ('84, ARMA), Caldiroli-Musina ('06, ARMA).
o n>4: Passing to W '-equibounded Palais-Smale sequences, i.e.,
An—1uj + Hy J(u;) = 0 in (WH"1)*
which are strongly compact in W7 Vg € [1,n — 1),
Dn_1(uj) = Dp—1(u) + Dp—1(uj — u) + o(1) (Brezis-Lieb lemma)

Vi(uj) = Va(u) + Vi(uj — u) + o(1)  (weak convergence of minors) .



o IfE(u;) — 0is P. S. and uj — u weakly in WH""1(S™ 1 R"), where u is
non-constant, by minimality and the isoperimetric inequality,

Do—1(uv) = Dn—1(wj) = Da-1(uj — u) + o(1)

n—1

= [Va(u) + Va(us — o)™ = Do—s1(uj — u) + o(1)

n—1

< Vo) T+ [Vl — )| 7 — Doty — u) + o(1)
< Doi(u) + 0(1),
so that either
Vo(u) =0 = Dh_1(u) =0 (contradiction)!,

or
Vo(uj—u) -0 = Dp_1(uyj—u) — 0,

i.e., the weak convergence in W"71(S""1:R") is improved to strong!

o Apply a concentration compactness argument (P. L. Lions, '84 AIHPC).
Use the Mobius-invariance to equi-spread the energy after precompositions,
so that the resulting weak limit is non-constant and at the end a rigid motion.



o Prove the local-W?'"~! nonlinear estimate, i.e.,

Proposition
For every w € WH""1(S"~1; R") with

]gnﬂ w=0, ]£n71<w’x> =0, Mpo(w)=0,

Sn_1(id—|— W) L1, HVTWHLn—l <1,
there holds

5n71(id + W) Z ][

sn

‘VTW‘rHl .
1

Basic ingredients for the proof

< Expansion of V, controlling the error terms via Sobolev embedding, Hélder's
and the parametric conformal-isoperimetric inequality.

< A suitable lower Taylor-type inequality instead of an expansion for D,_;.

© A contradiction/compactness argument based on the corresponding linear
stability estimate.



o After these reductions,

28, 1(id + w) > [Dn_1(id 4+ w)] ™1 — V,(id + w).

o For V, (which has polynomial structure):

n—2

Viid +w) — (1+ g]i (. AW)) = Z]gn PV 7w) + Va(w)

=2

<7Z o) (9l

o For D,—1 (which does not have polynomial structure), the key tool is

Algebraic lemma (Figalli-Zhang, '22, Duke Math. J.)

Let p > 2 and X, Y € R™. For every k > 0 there exists ¢, > 0 s.t.

_ 11—k _ _
X+ YIP = (IXP + pIXIP2(X, ¥)) 2= (pIX P2 Y P+ WIP2(1X] = X + V1))
=+ C’*“Y|p7

for an appropriate weight W := W(X, X + Y).



o Applying it for m:=n(n—1), p:=n—-1, X :=Pr, Y :=Vrw, ...

2&, 1(id + w) zc,i][ |Vrw|™!

sn—1
KN

+(1-— n)f),,(w) -5 ]€n71<W,A(W)> — Cn(]iq \VTW‘2)1+H 7

Q@n(w) == Qu(w) + Ry(V7w) (the remainder coming from the weighted
interpolant).

¢ Show that the red term is non-negative, via the following:
Lemma (Mildly-nonlinear stability)
VC,a>0,

cf < 1,30<60< 1st. if was above has £, , [Vrw|" ' <9,

Qn(w) > c]§H<w, A(w)) + c(][ rw) e

sn—1

o If not, along a (W"2-rescaled) contradicting sequence, we obtain a weak
limit w € H,, with M, o(W) = 0, for which ...

Qn(Ww) < ‘C|7[ |Vrw|®  (contradiction) ! ! !
Jsn—1
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