On the twisted Ruelle zeta function and the Ray-Singer metric

Polyxeni Spilioti

16th Panhellenic Geometry Conference Department of Mathematics National and Kapodistrian University of Athens 27.09.2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

I. Introduction

Introduction

Introduction

Ruelle zeta function: X hyperbolic surface

$$R(s) = \prod_{\gamma = \text{prime}} (1 - e^{-sl(\gamma)})^{-1}, \quad \text{Re}(s) > 1$$

Introduction

Ruelle zeta function: X hyperbolic surface

$$R(s) = \prod_{\gamma = \mathsf{prime}} (1 - e^{-sl(\gamma)})^{-1}, \quad \mathsf{Re}(s) > 1$$

Analogy: Riemann zeta function

$$\zeta(s) = \prod_{p=\text{prime}} (1-p^{-s})^{-1}, \quad \operatorname{Re}(s) > 1$$

For a hyperbolic manifold X, and a representation ρ of $\pi_1(X)$, study the behaviour of the Ruelle zeta function at the origin:

For a hyperbolic manifold X, and a representation ρ of $\pi_1(X)$, study the behaviour of the Ruelle zeta function at the origin:

$$R(s;\rho) = \prod_{\gamma \text{ prime}} \det \left(\mathsf{Id} - \rho(\gamma) e^{-s\ell(\gamma)} \right) \quad (\mathsf{Re}(s) \gg 0)$$

Fried: It admits a meromorphic extension to the whole complex plane and under certain assumptions for ρ ,

For a hyperbolic manifold X, and a representation ρ of $\pi_1(X)$, study the behaviour of the Ruelle zeta function at the origin:

$$R(s;\rho) = \prod_{\gamma \text{ prime}} \det \left(\mathsf{Id} - \rho(\gamma) e^{-s\ell(\gamma)} \right) \quad (\mathsf{Re}(s) \gg 0)$$

Fried: It admits a meromorphic extension to the whole complex plane and under certain assumptions for ρ ,

$$|R(0;\rho)| = T^{RS}(X,\rho)^2,$$

where

$$T^{RS}(X;\rho) = \prod_{p} \det_{\operatorname{reg}}(\Delta'_{p,\rho})^{(-1)^{(p+1)}p/2}$$

For a hyperbolic manifold X, and a representation ρ of $\pi_1(X)$, study the behaviour of the Ruelle zeta function at the origin:

$$R(s;
ho) = \prod_{\gamma \text{ prime}} \det \left(\mathsf{Id} -
ho(\gamma) e^{-s\ell(\gamma)} \right) \quad (\mathsf{Re}(s) \gg 0)$$

Fried: It admits a meromorphic extension to the whole complex plane and under certain assumptions for ρ ,

$$|R(0;\rho)| = T^{RS}(X,\rho)^2,$$

where

$$\mathcal{T}^{RS}(X;
ho)=\prod_{p}\det{}_{\operatorname{reg}}(\Delta'_{p,
ho})^{(-1)^{(p+1)}p/2}.$$

harmonic analysis on locally symmetric spaces

For a hyperbolic manifold X, and a representation ρ of $\pi_1(X)$, study the behaviour of the Ruelle zeta function at the origin:

$$R(s;\rho) = \prod_{\gamma \text{ prime}} \det \left(\mathsf{Id} - \rho(\gamma) e^{-s\ell(\gamma)} \right) \quad (\mathsf{Re}(s) \gg 0)$$

Fried: It admits a meromorphic extension to the whole complex plane and under certain assumptions for ρ ,

$$|R(0;\rho)| = T^{RS}(X,\rho)^2,$$

where

$$\mathcal{T}^{RS}(X;
ho)=\prod_{p}\det{}_{\operatorname{reg}}(\Delta'_{p,
ho})^{(-1)^{(p+1)}p/2}.$$

harmonic analysis on locally symmetric spaces

representation theory, Selberg trace formula

II. Fried's conjecture and non-unitary representations

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

• $X = \Gamma \setminus G / K$ is a *d*-dimensional locally symmetric compact hyperbolic manifold

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

•
$$G = SO^{0}(d, 1), K = SO(d), d = 2n + 1, n \in \mathbb{N}_{>}$$

•
$$\widetilde{X} := G/K \cong \mathbb{H}^d$$
 using the Killing form

 \blacktriangleright Γ discrete, cocompact, torsion-free subgroup of G

Fix notation

- ▶ $\mathfrak{g} = \text{Lie}$ algebra of *G*
- ▶ \mathfrak{k} =Lie algebra of *K*
- ▶ $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, the Cartan decomposition of \mathfrak{g}

- a = a maximal abelian subalgebra of p
- A subgroup of G with Lie algebra α
- $M := \operatorname{Centr}_{K}(A) = \operatorname{SO}(d-1)$

・ロ・・四・・川・・ (四・・日・

The dynamical zeta functions are associated with the geodesic flow on S(X) ≅ Γ\G/M

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

The dynamical zeta functions are associated with the geodesic flow on S(X) ≅ Γ\G/M

► Γ cocompact ---> every $\gamma \in \Gamma$, with $\gamma \neq e$ is hyperbolic.

The dynamical zeta functions are associated with the geodesic flow on S(X) ≅ Γ\G/M

► Γ cocompact --- every $\gamma \in \Gamma$, with $\gamma \neq e$ is hyperbolic.

• then, $\gamma \sim_G m_{\gamma} a_{\gamma}$ (Wallach 1976).

- The dynamical zeta functions are associated with the geodesic flow on S(X) ≅ Γ\G/M
- ► Γ cocompact --- every $\gamma \in \Gamma$, with $\gamma \neq e$ is hyperbolic.

• then,
$$\gamma \sim_G m_{\gamma} a_{\gamma}$$
 (Wallach 1976).

Definition (Twisted Selberg zeta function)

$$Z(s; \sigma, \chi) := \prod_{[\gamma] \neq e} \prod_{k=0}^{\infty} \det \left(\operatorname{Id} - (\chi(\gamma) \otimes \sigma(m_{\gamma}) \otimes [\gamma] \operatorname{prime} S^{k}(\operatorname{Ad}(m_{\gamma}a_{\gamma})|_{\overline{\mathfrak{n}}}))e^{-(s+|\rho|)|/(\gamma)} \right),$$

for $\operatorname{Re}(s) > r$, r positive constant.

Definition (twisted Ruelle zeta function)

$$R(s;\sigma,\chi) := \prod_{\substack{[\gamma] \neq e \\ [\gamma] \text{ prime}}} \det \big(\operatorname{Id} - (\chi(\gamma) \otimes \sigma(m_{\gamma})) e^{-s l(\gamma)} \big)^{(-1)^{d-1}},$$

for $\operatorname{Re}(s) > c$, c positive constant.

The product runs over the prime conjugacy classes [γ] of Γ, which correspond to the prime closed geodesics on X of length *l*(γ).

("Lefshetz formulas for flows") Relate the Ruelle zeta function at zero with the analytic torsion.

 \rightsquigarrow By Cheeger-Mueller theorem one can pass to the Reidemeister torsion, a topological invariant.

Fried 1986: Ruelle zeta function R(s; χ), associated with an orthogonal representation χ of the fundamental group. The leading term of the Laurent expansion of R(s; χ) at s = 0 is

$$C(\chi)T^{RS}(X;\chi)^2s^h$$

where h is a number defined in pure cohomological terms (Betti numbers).

("Lefshetz formulas for flows") Relate the Ruelle zeta function at zero with the analytic torsion.

 \rightsquigarrow By Cheeger-Mueller theorem one can pass to the Reidemeister torsion, a topological invariant.

Fried 1986: Ruelle zeta function R(s; χ), associated with an orthogonal representation χ of the fundamental group. The leading term of the Laurent expansion of R(s; χ) at s = 0 is

$$C(\chi)T^{RS}(X;\chi)^2s^h$$

where h is a number defined in pure cohomological terms (Betti numbers). Related work:

- Bunke-Olbrich, Wotzke, Müller, Pfaff, Fedosova, Shen.
- Dang-Guillarmou-Riviere-Shen, Chaubet-Dang, Dyatlov-Delarue-Paternain, Dyatlov-Zworski, Abdurrahman-Venkatesh.

Analogies in number theory

 \rightsquigarrow Dedekind zeta function

$$\zeta_{\mathcal{K}}(s) := \prod_{\mathfrak{p} \text{ prime} \subseteq \mathcal{O}_{\mathcal{K}}} \left(1 - (N_{\mathcal{K}/\mathbb{Q}}(\mathfrak{p})^{-s})^{-1}, \quad \operatorname{Re}(s) > 1.\right)$$

 \rightsquigarrow Artin *L*-function associated with a Galois representation (twisted version)

 \rightsquigarrow Analytic class number formula $\zeta_{\mathcal{K}}(s)$ has a simple pole at s = 1 with residue

$$\lim_{s \to 1} (s-1)\zeta_{\mathcal{K}}(s) = \frac{2^{r_1}(2\pi)^{r_2}\operatorname{Reg}_{\mathcal{K}}h_{\mathcal{K}}}{w_{\mathcal{K}}\sqrt{|D_{\mathcal{K}}|}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(a reference: Morishita "Knots and primes").

Arbitrary representations of Γ on a f.d. complex vector space

$$\chi: \Gamma \to \mathsf{GL}(V_{\chi})$$

• flat vector bundle: $E_{\chi} \rightarrow X$

Arbitrary representations of Γ on a f.d. complex vector space

$$\chi: \Gamma \to \operatorname{GL}(V_{\chi})$$

- flat vector bundle: $E_{\chi} \rightarrow X$
- Problem: there is no Hermitian metric h^x, which is compatible with the flat connection on the flat vector bundle --→ we deal with non self-adjoint Laplace and Dirac operators

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Arbitrary representations of Γ on a f.d. complex vector space

 $\chi: \Gamma \to \operatorname{GL}(V_{\chi})$

• flat vector bundle: $E_{\chi} \rightarrow X$

- Problem: there is no Hermitian metric h^X, which is compatible with the flat connection on the flat vector bundle --→ we deal with non self-adjoint Laplace and Dirac operators
- Solution: Twisted Bochner-Laplace operator Δ[♯]_{τ,χ} acting on smooth sections of twisted vector bundles E_τ ⊗ E_χ, τ ∈ K
 - ▶ it is an elliptic operator --→ nice spectral properties --→ its spectrum is discrete and contained in a translate of a positive cone in C.
 - Consider the corresponding heat semi-group e^{-tΔ[#]_{τ,χ}}. It is an integral operator with smooth kernel.
 - Consider the trace of the operator $e^{-t\Delta_{\tau,\chi}^{\sharp}}$ and derive a trace formula.

Trace formula

Theorem (S., 2018) For every $\sigma \in \widehat{M}$ we have

$$\mathsf{Tr}(e^{-tA_{\chi}^{\sharp}(\sigma)}) = \dim(V_{\chi}) \operatorname{Vol}(X) \int_{\mathbb{R}} e^{-t\lambda^{2}} P_{\sigma}(i\lambda) d\lambda + \sum_{[\gamma] \neq e} \frac{I(\gamma)}{n_{\Gamma}(\gamma)} L(\gamma; \sigma, \chi) \frac{e^{-I(\gamma)^{2}/4t}}{(4\pi t)^{1/2}};$$

where

$$L(\gamma; \sigma, \chi) = \frac{\operatorname{tr}(\chi(\gamma) \otimes \sigma(m_{\gamma}))e^{-|\rho|I(\gamma)}}{\operatorname{det}(\operatorname{Id} - \operatorname{Ad}(m_{\gamma}a_{\gamma})_{\overline{n}})}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Meromorphic continuation for arbitrary representations of Γ

Theorem (S., 2018)

Let $\sigma \in \widehat{M}$ and $\chi \colon \Gamma \to \operatorname{GL}(V_{\chi})$ be a finite dimensional representation of Γ . The twisted Selberg zeta function $Z(s; \sigma, \chi)$ associated with σ and χ admits a meromorphic continuation to the whole complex plane \mathbb{C} . Its singularities are described in terms of the discrete eigenvalues of the twisted operators $A_{\chi}^{\sharp}(\sigma)$ and $D_{\chi}^{\sharp}(\sigma)$ and their orders are described by the corresponding algebraic multiplicities.

Theorem (S., 2018)

For every $\sigma \in \widehat{M}$ and for every finite dimensional representation χ of Γ , the twisted Ruelle zeta function $R(s; \sigma, \chi)$ admits a meromorphic continuation to the whole complex plane \mathbb{C} .

Theorem (S., 2020)

Let χ be a finite-dimensional complex representation of Γ . Let $\Delta_{\chi,k}^{\sharp}$ be the flat Hodge Laplacian, acting on the space of k-differential forms on X with values in the flat vector bundle E_{χ} . Then, the Ruelle zeta function has the representation

$$R(s;\chi) = \prod_{k=0}^{d-1} \prod_{p=k}^{d-1} \det_{gr} \left(\Delta_{\chi,k}^{\sharp} + s(s+2(|\rho|-p)) \right)^{(-1)^{p}} \\ \cdot \exp\left((-1)^{\frac{d-1}{2}+1} \pi(d+1) \dim(V_{\chi}) \frac{\operatorname{Vol}(X)}{\operatorname{Vol}(S^{d})} s \right).$$

where $\operatorname{Vol}(S^d)$ denotes the volume of the d-dimensional Euclidean unit sphere. Let $d_{\chi,k} := \dim \operatorname{Ker}(\Delta_{\chi,k}^{\sharp})$. Then, the singularity of the Ruelle zeta function at s = 0 is of order

$$\sum_{k=0}^{(d-1)/2} (d+1-2k)(-1)^k d_{\chi,k}$$

Back to Fried's conjecture:

Prove that the Ruelle zeta function is regular at 0 and is related to the refined analytic torsion as it is introduced by Braverman and Kappeler and the Cappell-Miller torsion defined by Cappell and Miller. This is rather a complex refinement of the Ray-Singer analytic torsion.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Back to Fried's conjecture:

- Prove that the Ruelle zeta function is regular at 0 and is related to the refined analytic torsion as it is introduced by Braverman and Kappeler and the Cappell-Miller torsion defined by Cappell and Miller. This is rather a complex refinement of the Ray-Singer analytic torsion.
- Problem: Hodge theory is not applicable:

 $\operatorname{Ker}(\Delta_{\chi,k}^{\sharp}) \ncong H^{k}(X; E_{\chi})$

Back to Fried's conjecture:

- Prove that the Ruelle zeta function is regular at 0 and is related to the refined analytic torsion as it is introduced by Braverman and Kappeler and the Cappell-Miller torsion defined by Cappell and Miller. This is rather a complex refinement of the Ray-Singer analytic torsion.
- Problem: Hodge theory is not applicable:

$$\operatorname{Ker}(\Delta_{\chi,k}^{\sharp}) \ncong H^{k}(X; E_{\chi})$$

Solution: suitable set of representations: deformations of acyclic and unitary representations of the fundamental group. Let $V \subset \operatorname{Rep}(\pi_1(X), \mathbb{C}^n)$ be an open neighbourhood (in classical topology) of the set $\operatorname{Rep}_0^u(\pi_1(X), \mathbb{C}^n)$ of acyclic, unitary representations such that, for all $\chi \in V$, B_{χ} is bijective. B_{χ} is the odd signature operator, $B_{k,\chi}^2 = \Delta_{\chi,k}^{\sharp}$.

Theorem (S., 2020)

Let $\chi \in V$. Then, the Ruelle zeta function $R(s; \chi)$ is regular at s = 0 and is equal to the complex Cappell-Miller torsion,

 $R(0;\chi)=\tau_{\chi}.$

(日)

Let $V \subset \operatorname{Rep}(\pi_1(X), \mathbb{C}^n)$ be an open neighbourhood (in classical topology) of the set $\operatorname{Rep}_0^u(\pi_1(X), \mathbb{C}^n)$ of acyclic, unitary representations such that, for all $\chi \in V$, B_{χ} is bijective. B_{χ} is the odd signature operator, $B_{k,\chi}^2 = \Delta_{\chi,k}^{\sharp}$.

Theorem (S., 2020)

Let $\chi \in V$. Then, the Ruelle zeta function $R(s; \chi)$ is regular at s = 0 and is equal to the complex Cappell-Miller torsion,

$$R(0;\chi) = au_{\chi}.$$

See also results and extensions by Müller and Shen

Cappell-Miller torsion

It is defined in terms of the bicomplex (Λ*(X, E), ∂, ∂^{*,‡}): a combination of the

 $\operatorname{torsion}(\Lambda_{[0,\lambda]}^k(X,E),\partial,\partial^{*,\sharp}) \in \operatorname{det}(H^*(X,E)) \otimes \operatorname{det}(H^*(X,E))$

and the square of the Ray-Singer term

$$\prod_{k=0}^{d} \det_{\theta} (\Delta^{\sharp}|_{\Lambda^{k}_{(\lambda,\infty)}(X,E)})^{k(-1)^{k+1}} \in \mathbb{C}$$

• flat Laplacian Δ^{\sharp} acting on $\Lambda^*(X, E)$ is given by

$$\Delta^{\sharp} := \partial \partial^{*,\sharp} + \partial^{*,\sharp} \partial$$

Ray-Singer metric

Open problem: General representation of Γ?

- Solution: Consider the Ray-Singer norm for the refined analytic torsion.
- ► As it is was first introduced by Quillen for Riemann surfaces. It is a norm on the determinant line of H[•](X, E).

Definition

The Ray-Singer metric on $det(H^{\bullet}(X, E))$ is defined by

$$\|\cdot\|_{\det(H^{\bullet}(X,E))}^{\mathsf{RS}}: = \|\cdot\|_{\lambda} \cdot T_{(\lambda,\infty)}^{\mathsf{RS}}, \lambda \ge 0.$$

Theorem (S., 2024)

Let $X = \Gamma \setminus \mathbb{H}^d$ be a compact, oriented, odd-dimensional hyperbolic manifold. Let $\chi \colon \Gamma \to \operatorname{GL}(V_{\chi})$ be a finite-dimensional, complex representation of Γ . Let h_k be the dimension of the generalized eigenspace of the twisted Hodge Lappace operator $\Delta_{\chi,k}^{\sharp}$ with eigenvalue zero. Let

$$h_0 = \sum_{k=0}^{d-1} (d+1-k)(-1)^k h_k$$

Then,

$$\left|\lim_{s\to 0} s^{-h_0} R(s;\chi)\right| = C(d,\chi) \left(\frac{\|\rho_{\mathsf{an}}(X;\chi)\|_{\mathsf{det}(H^*(X,E_\chi))}^{RS}}{\|\rho_{\mathsf{an}}(X;\chi)\|_0}\right)^2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

III. Further applications

Locally symmetric spaces of real rank 1

Theorem (Harish-Chandra)

The set of the discrete series representations of G is not empty if and only if $\operatorname{rank}_{\mathbb{C}}(G) = \operatorname{rank}_{\mathbb{C}}(K)$.

Compact hyperbolic surface X

Locally symmetric spaces of real rank 1

Theorem (Harish-Chandra)

The set of the discrete series representations of G is not empty if and only if $\operatorname{rank}_{\mathbb{C}}(G) = \operatorname{rank}_{\mathbb{C}}(K)$.

Compact hyperbolic surface X

Twisted Selberg zeta function

$$Z(s;\chi) := \prod_{\substack{[\gamma] \neq e \\ [\gamma] \text{ prime}}} \prod_{k=0}^{\infty} \det \big(\operatorname{Id} - \chi(\gamma) e^{-(s+k)I(\gamma)} \big), \quad \operatorname{Re}(s) > c_1$$

Locally symmetric spaces of real rank 1

Theorem (Harish-Chandra)

The set of the discrete series representations of G is not empty if and only if $\operatorname{rank}_{\mathbb{C}}(G) = \operatorname{rank}_{\mathbb{C}}(K)$.

Compact hyperbolic surface X

Twisted Selberg zeta function

$$Z(s;\chi) := \prod_{\substack{[\gamma] \neq e \\ [\gamma] \text{ prime}}} \prod_{k=0}^{\infty} \det \big(\operatorname{Id} - \chi(\gamma) e^{-(s+k)l(\gamma)} \big), \quad \operatorname{Re}(s) > c_1$$

Twisted Ruelle zeta function

$$egin{aligned} R(s;\chi) &= \prod_{\substack{[\gamma]
eq e \ [\gamma] ext{ prime}}} \det(\operatorname{\mathsf{Id}}-\chi(\gamma)e^{-sl(\gamma)}), \quad \operatorname{\mathsf{Re}}(s) > c_2 \end{aligned}$$

Since

$$R(s;\chi) = \frac{Z(s;\chi)}{Z(s+1;\chi)}$$

Then,

Corollary (Frahm-S., 2021)

The twisted Ruelle zeta function $R(s; \chi)$ admits a meromorphic continuation to \mathbb{C} .

Corollary (Frahm-S., 2021)

The twisted Ruelle zeta function $R(s; \chi)$ near s = 0 is given by

$$R(s; \chi) = \pm (2\pi s)^{\dim(V_{\chi})(2g-2)} + higher order terms.$$

Here g is the genus of the surface.

Compact hyperbolic orbisurface X: connection to topological torsion but for the Seifert fiber space $X_1 = \Gamma \setminus PSL_2(\mathbb{R}) = S(X)$ over X

→ exact sequence

$$1 \rightarrow \mathbb{Z} = \pi_1(\mathsf{PSO}(2)) \rightarrow \pi_1(X_1) \rightarrow \Gamma = \pi_1(X) \rightarrow 1$$

Theorem (Bénard-Frahm-S., 2021)

For any irreducible representation $\rho: \pi_1(X_1) \to \operatorname{GL}(V_\rho)$, the Ruelle zeta function $R(s; \rho)$ converges on some right half plane in \mathbb{C} and extends meromorphically to the whole complex plane. Moreover: If $\rho(t) \neq \operatorname{Id}_{V_\rho}$, then the representation ρ is acyclic. Let \mathfrak{e}_{geod} be the Euler structure induced by the geodesic flow on X_1 . Then

$$R(0; \rho) = \pm \operatorname{tor}(X_1, V_{\rho}, \mathfrak{e}_{geod}),$$

where $\operatorname{tor}(X_1, V_{\rho}, \mathfrak{e}) \in \mathbb{C}^{\times}$ denotes the Reidemeister–Turaev torsion of X_1 in the representation V_{ρ} and the Euler structure \mathfrak{e}_{geod} .

Selberg trace formula with non-unitary twist for surfaces

$$\operatorname{tr}(e^{-t\Delta_{\chi}^{\sharp}}) = \frac{1}{4\pi^{2}} \operatorname{dim}(V_{\chi}) \operatorname{Vol}(X) \int_{\mathbb{R}} e^{-t(\lambda^{2} + \frac{1}{4})} \lambda \pi \tanh \lambda \pi d\lambda$$
$$+ \sum_{[\gamma] \neq e} \operatorname{tr} \chi(\gamma) \frac{l(\gamma)}{n_{\Gamma}(\gamma)D(\gamma)} \frac{1}{2\pi} \int_{\mathbb{R}} e^{-t(\lambda^{2} + \frac{1}{4})} e^{-il(\gamma)\lambda} d\lambda.$$

Selberg trace formula with non-unitary twist for orbisurfaces

$$\begin{aligned} \operatorname{Tr}(e^{-tA_{\tau_{m,\rho}}^{\sharp}}) &= \frac{\operatorname{Vol}(X)\operatorname{dim}(V_{\rho})}{4\pi} \left[\int_{\mathbb{R}} e^{-t\lambda^{2}} \frac{\lambda \sinh 2\pi\lambda}{\cosh 2\pi\lambda + \cos \pi m} \, d\lambda \\ &+ \sum_{\substack{1 \leq \ell < |m| \\ \ell \text{ odd}}} (|m| - \ell) e^{\left(\frac{|m| - \ell}{2}\right)^{2} t} \right] \\ &+ \frac{1}{2\sqrt{4\pi t}} \sum_{\left[\gamma\right] \text{ hyp. }} \frac{l(\gamma)\operatorname{tr}\rho(\gamma)}{n_{\Gamma}(\gamma)\operatorname{sinh}\frac{l(\gamma)}{2}} e^{-\frac{l(\gamma)^{2}}{4t}} \\ &+ \sum_{\left[\gamma\right] \text{ ell. }} \frac{\operatorname{tr}\rho(\gamma)}{4M(\gamma)\operatorname{sin}\theta(\gamma)} \left[\int_{\mathbb{R}} e^{-t\lambda^{2}} \frac{\cosh 2(\pi - \theta(\gamma))\lambda + e^{i\pi m} \cosh 2\theta(\gamma)\lambda}{\cosh 2\pi\lambda + \cos \pi m} \right] \\ &+ 2i\operatorname{sign}(m) \sum_{\substack{1 \leq \ell < |m| \\ \ell \text{ odd}}} e^{i\operatorname{sign}(m)(|m| - \ell)\theta(\gamma)} e^{\left(\frac{|m| - \ell}{2}\right)^{2} t} \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Further applications: Bottom of the spectrum, Teichmüller representations

> Define the critical exponent
$$\delta$$
 of the representation ϱ by

$$\delta(arrho):=\inf\left\{s>0\ :\ \sum_{\gamma\in\mathcal{P},k\geq 1}|\mathrm{tr}(arrho(\gamma^k))|e^{-sk\ell(\gamma)}<\infty
ight\}.$$

▶ Define the parabolic regions $\mathcal{C}_{\sigma} \subset \mathbb{C}$ for all $\sigma \in (1/2, +\infty)$ by

$$\mathcal{C}_{\sigma}:=\left\{z=x+iy\in\mathbb{C}\ :\ x\geq\sigma(1-\sigma)+rac{y^2}{(1-2\sigma)^2}
ight\}.$$

•
$$P_{\sigma} := \partial C_{\sigma}$$
, the parabola given by the equation $\{x + iy : x = \sigma(1 - \sigma) + \frac{y^2}{(1 - 2\sigma)^2}\}.$

Theorem (Naud-S., 2022)

Let Δ_{ϱ} be the twisted Laplacian defined as above, then one always have

$$\operatorname{Sp}(\Delta_{\varrho}) \subset \mathcal{C}_{\delta(\varrho)}.$$

Projects

- 1. Locally symmetric spaces of real rank 1.
- 2. Consider not necessarily the deformations of the acyclic and unitary representations as before.

Open problems: the cofinite case $? \rightsquigarrow$ arithmetic manifolds.

Thank you