The affine-additive group Athens 2024

I.D. Platis

12th September 2024

I.D. Platis

[The affine-additive group Athens 2024](#page-18-0) 1173 \sim 1173 \sim

 $2Q$ ≣ - b

K ロトメ個 ▶ X 君 ▶ X 君

I.D. Platis

[The affine-additive group Athens 2024](#page-0-0) \sim 2003 \sim

Let $SU(n, 1)$ be (the triple cover) of the group of holomorphic isometries of the complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^n$. The latter is realised by the Siegel domain

$$
\mathbf{H}_{\mathbb{C}}^{n} = \{ \zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n \mid 2\Re(\zeta_1) + \sum_{i=2}^{n} |\zeta_i|^2 < 0 \}.
$$

Let $SU(n, 1)$ be (the triple cover) of the group of holomorphic isometries of the complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^n$. The latter is realised by the Siegel domain

$$
\mathbf{H}_{\mathbb{C}}^{n} = \{ \zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n \mid 2\Re(\zeta_1) + \sum_{i=2}^{n} |\zeta_i|^2 < 0 \}.
$$

We are in particular interested in two types of elements of $SU(n,1)$.

 QQ

∢ ロ ▶ ∢ 何 ▶ ∢ 后 ▶ ∢ 后 ▶

*Dilations D*_{λ}, $\lambda > 0$. Those correspond to elements of SU(*n*, 1) of the following form

$$
D(\lambda) = \begin{pmatrix} \sqrt{\lambda} & 0 & 0 \\ 0 & I_{n-2} & 0 \\ 0 & 0 & 1/\sqrt{\lambda} \end{pmatrix}.
$$

The group *D* comprising elements of the above form is abelian and isomorphic to $\mathbb{R}_{>0}$, \cdot).

 QQ

Ε

メロトメ 伊 トメ き トメ き ト

Heisenberg translations N(ζ , *t*). Those correspond to elements of $SU(n, 1)$ of the following form:

$$
N(z,t) = \begin{pmatrix} 1 & -\sqrt{2}\overline{z} & -\sum_{i=1}^{n} |z_i|^2 + it \\ 0 & I_{n-2} & \sqrt{2}z^t \\ 0 & 0 & 1 \end{pmatrix},
$$

where $z = (z_1, ..., z_n) \in \mathbb{C}^n$, $z_i = x_i + iy_i$, $t \in \mathbb{R}$.

Heisenberg translations N(ζ , *t*). Those correspond to elements of $SU(n, 1)$ of the following form:

$$
N(z,t) = \begin{pmatrix} 1 & -\sqrt{2}\overline{z} & -\sum_{i=1}^{n} |z_i|^2 + it \\ 0 & I_{n-2} & \sqrt{2}z^t \\ 0 & 0 & 1 \end{pmatrix},
$$

where $z = (z_1, ..., z_n) \in \mathbb{C}^n$, $z_i = x_i + iy_i$, $t \in \mathbb{R}$.

■ The group *N* comprising Heisenberg translations is isomorphic to the $(n-1)$ -th Heisenberg group \mathbb{H}^{n-1} for $n > 1$.

If
$$
n = 1
$$
, then

$$
N = N(t) = \begin{pmatrix} 1 & it \\ 0 & 1 \end{pmatrix}, \quad t \in \mathbb{R},
$$

and the group *N* is isomorphic to $(\mathbb{R}, +)$.

■ We now consider matrices of the form

$$
S(z, t, \lambda) = N(z, t)D(\lambda) = \begin{pmatrix} \sqrt{\lambda} & -\sqrt{2}\overline{z} & \frac{-\sum_{i=1^n} |z_i|^2 + it}{\sqrt{\lambda}} \\ 0 & I_{n-2} & \frac{\sqrt{2}z^t}{\sqrt{\lambda}} \\ 0 & 0 & \frac{1}{\sqrt{\lambda}} \end{pmatrix}
$$

Kロ ▶ K 伊

 $\,$ $\,$

君・メ君→

Ε $2Q$

■ Via this set of matrices we find a 1–1 and onto correspondence of the set $\mathbb{R}_{>0} \times \mathbb{H}^{n-1}$ with the complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^n$.

 QQ

*ロト→個→→ *目→ *目→

- \blacksquare Via this set of matrices we find a 1–1 and onto correspondence of the set $\mathbb{R}_{>0} \times \mathbb{H}^{n-1}$ with the complex hyperbolic space $\mathbf{H}_{\mathbb{C}}^n$.
- \blacksquare In fact, the map is

$$
(\lambda, z, t) \mapsto \left(-\sum_{i=1}^{n-1} |z_i|^2 - \lambda + it, \sqrt{2}z \right)
$$

and it just desribes the foliation of $\mathbf{H}_{\mathbb{C}}^n$ by $2n - 1$ -horospheres which are all copies of the Heisenberg group H*n*−¹ .

 QQ

イロト (何) イヨト (ヨ)

If $S(\lambda', z', t')$ and $S(\lambda, z, t)$ are two such matrices, from the matrix multiplication

 $S(\lambda', z', t')S(\lambda, z, t)$

we obtain the following group multiplication for the set $\mathbb{R}_{>0}\times\mathbb{H}^{n-1}$:

$$
(\lambda', z', t') * (\lambda, z, t) = (\lambda' \lambda, z' + \sqrt{\lambda'} z, t' + t \lambda' + 2\sqrt{\lambda'} \Im(z' \cdot \overline{z}))
$$
\n(1.1)

 QQ э

*ロト→個→→ *目→ *目→

■ We next consider the set

$$
\mathcal{A}\mathcal{A}^n = \mathbb{R} \times (\mathbb{R}_{>0} \times \mathbb{H}^{n-1})
$$

with coordinates (a, λ, z, t) and multiplication law

$$
p' * p = (a' + a, \lambda' \lambda, z' + \sqrt{\lambda'} z, t' + t\lambda' + 2\sqrt{\lambda'} \Im(z' \cdot \overline{z})),
$$

for each $p = (a, \lambda, z, t), p' = (a', \lambda', z', t').$ (1.2)

■ We next consider the set

$$
\mathcal{A}\mathcal{A}^n = \mathbb{R} \times (\mathbb{R}_{>0} \times \mathbb{H}^{n-1})
$$

with coordinates (a, λ, z, t) and multiplication law

$$
p' * p = (a' + a, \lambda' \lambda, z' + \sqrt{\lambda'} z, t' + t \lambda' + 2\sqrt{\lambda'} \Im(z' \cdot \overline{z}))
$$

for each $p = (a, \lambda, z, t), p' = (a', \lambda', z', t').$

Then the set AA^n with the multiplication law $*$ as above is a group with neutral element $e = (0, 1, 0_n, 0)$ and such that for each $p = (a, \lambda, z, t) \in \mathcal{A} \mathcal{A}^n$ its inverse is

$$
p^{-1}=(-a, 1/\lambda, -\sqrt{\lambda}z, -t/\lambda).
$$

 QQ

*ロト→個→→ *目→ *目→

Definition

We shall call the group $(AA^n, *)$ *the (n-th) affine-additive group.*

I.D. Platis

[The affine-additive group Athens 2024](#page-0-0) 15/73 \sim 15/73

 299

目

すロト (御) すきとすきとう

Lie group structure

We write as above $p' = (a', \lambda', z', t;)$ and $p = (a, \lambda, z, t)$. From the differential of the left translation $L_{p'}(p) = p' * p$, we obtain the folowing invariant basis of the tangent bundle of AA*ⁿ* :

$$
X_i = \sqrt{\lambda}(\partial_{x_i} + 2y_i\partial_t), \qquad Y_i = \sqrt{\lambda}(\partial_{y_i} - 2x_i\partial_t),
$$

\n
$$
V = 2\lambda \partial_{\lambda}, \quad U = \partial_a + 2\lambda \partial_t, \quad W = -\partial_a.
$$
 (1.3)

 \blacksquare The only non vanishing Lie brackets are the following

$$
[X_i, Y_i] = [U, V] = -2(V + W),
$$

\n
$$
[X_i, V] = -X_i, [Y_i, V] = Y_i.
$$
\n(1.4)

(ロ) (日)

→ 君 ⊁ → 君 ≯

[The affine-additive group Athens 2024](#page-0-0) 17/73 \sim 17/73

 299

≣

Contact form

■ We now consider the 1–form

$$
\theta = \frac{dt + 2\sum_{i=1}^{n-1} (x_i dy_i - y_i dx_i)}{2\lambda} - da.
$$
 (1.5)

I.D. Platis

[The affine-additive group Athens 2024](#page-0-0) 18/73 \sim 18/73

 299

目

メロトメ部 トメミトメミト

Contact form

Proposition

The pair (AA^n, θ) *is a* $(2n + 1)$ *-dimensional contact manifold. In fact, the following hold:*

- a) *The form* θ *is left–invariant.*
- b) $\theta \wedge (d\theta)^n \neq 0$.

c)
$$
\theta(W) = 1
$$
 and $\langle W \rangle = \ker(d\theta)^n$.

d) ker $\theta = \langle X_i, Y_i, U, V \rangle$.

÷. 299

メロトメ部 トメ君 トメ君 トッ