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Let SU(n, 1) be (the triple cover) of the group of holomorphic
isometries of the complex hyperbolic space Hn

C. The latter is
realised by the Siegel domain

Hn
C = {ζ = (ζ1, . . . , ζn) ∈ Cn | 2<(ζ1) +

n∑
i=2

|ζi|2 < 0}.
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Definition-group structure

Let SU(n, 1) be (the triple cover) of the group of holomorphic
isometries of the complex hyperbolic space Hn

C. The latter is
realised by the Siegel domain

Hn
C = {ζ = (ζ1, . . . , ζn) ∈ Cn | 2<(ζ1) +

n∑
i=2

|ζi|2 < 0}.

We are in particular interested in two types of elements of
SU(n, 1).
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Dilations Dλ, λ > 0. Those correspond to elements of SU(n, 1)
of the following form

D(λ) =


√
λ 0 0
0 In−2 0

0 0 1/
√
λ

 .

The group D comprising elements of the above form is abelian
and isomorphic to R>0, ·).
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Heisenberg translations N(ζ, t). Those correspond to elements of
SU(n, 1) of the following form:

N(z, t) =

1 −
√
2z −

∑n
i=1 |zi|2 + it

0 In−2

√
2zt

0 0 1

 ,

where z = (z1, . . . , zn) ∈ Cn, zi = xi + iyi, t ∈ R.
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Definition-group structure

Heisenberg translations N(ζ, t). Those correspond to elements of
SU(n, 1) of the following form:

N(z, t) =

1 −
√
2z −

∑n
i=1 |zi|2 + it

0 In−2

√
2zt

0 0 1

 ,

where z = (z1, . . . , zn) ∈ Cn, zi = xi + iyi, t ∈ R.
The group N comprising Heisenberg translations is isomorphic to
the (n− 1)-th Heisenberg group Hn−1 for n > 1.
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If n = 1, then

N = N(t) =
(
1 it
0 1

)
, t ∈ R,

and the group N is isomorphic to (R,+).
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We now consider matrices of the form

S(z, t, λ) = N(z, t)D(λ) =



√
λ −

√
2z −

∑
i=1n |zi|2+it√

λ

0 In−2

√
2zt√
λ

0 0 1√
λ
.


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Via this set of matrices we find a 1–1 and onto correspondence of
the set R>0 ×Hn−1 with the complex hyperbolic space Hn

C.
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Via this set of matrices we find a 1–1 and onto correspondence of
the set R>0 ×Hn−1 with the complex hyperbolic space Hn

C.

In fact, the map is

(λ, z, t) 7→

(
−

n−1∑
i=1

|zi|2 − λ+ it,
√
2z

)

and it just desribes the foliation of Hn
C by 2n− 1-horospheres

which are all copies of the Heisenberg group Hn−1.
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If S(λ′, z′, t′) and S(λ, z, t) are two such matrices, from the matrix
multiplication

S(λ′, z′, t′)S(λ, z, t)

we obtain the following group multiplication for the set
R>0 ×Hn−1:

(λ′, z′, t′)∗(λ, z, t) =
(
λ′λ, z′ +

√
λ′z, t′ + tλ′ + 2

√
λ′=(z′ · z)

)
.

(1.1)

I.D. Platis

The affine-additive group Athens 2024 12/73



Definition-group structure

Definition-group structure

We next consider the set

AAn = R× (R>0 ×Hn−1)

with coordinates (a, λ, z, t) and multiplication law

p′ ∗ p =
(
a′ + a, λ′λ, z′ +

√
λ′z, t′ + tλ′ + 2

√
λ′=(z′ · z)

)
,

(1.2)
for each p = (a, λ, z, t), p′ = (a′, λ′, z′, t′).
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We next consider the set

AAn = R× (R>0 ×Hn−1)

with coordinates (a, λ, z, t) and multiplication law

p′ ∗ p =
(
a′ + a, λ′λ, z′ +

√
λ′z, t′ + tλ′ + 2

√
λ′=(z′ · z)

)
,

for each p = (a, λ, z, t), p′ = (a′, λ′, z′, t′).
Then the set AAn with the multiplication law ∗ as above is a
group with neutral element e = (0, 1, 0n, 0) and such that for each
p = (a, λ, z, t) ∈ AAn its inverse is

p−1 = (−a, 1/λ, −
√
λz, −t/λ).
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Definition

We shall call the group (AAn, ∗) the (n-th) affine-additive group.
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Lie group structure

We write as above p′ = (a′, λ′, z′, t; ) and p = (a, λ, z, t). From
the differential of the left translation Lp′(p) = p′ ∗ p, we obtain the
folowing invariant basis of the tangent bundle of AAn:

Xi =
√
λ(∂xi + 2yi∂t), Yi =

√
λ(∂yi − 2xi∂t),

V = 2λ∂λ, U = ∂a + 2λ∂t , W = −∂a. (1.3)
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The only non vanishing Lie brackets are the following

[Xi,Yi] = [U ,V ] = −2(V +W),

[Xi,V ] = −Xi, [Yi,V ] = Yi. (1.4)
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Contact form

We now consider the 1–form

θ =
dt + 2

∑n−1
i=1 (xidyi − yidxi)

2λ
− da. (1.5)
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Proposition

The pair (AAn, θ) is a (2n+ 1)-dimensional contact manifold. In fact,
the following hold:

a) The form θ is left–invariant.

b) θ ∧ (dθ)n 6= 0.

c) θ(W) = 1 and 〈W〉 = ker(dθ)n.
d) ker θ = 〈Xi,Yi,U ,V〉.
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