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Introduction

1 Sine-Gordon equations and applications to Geometric Analysis.

2 Harmonic maps and the elliptic sinh-Gordon.

3 Families of solutions of the elliptic sinh-Gordon.

4 Bäcklund transformation connecting the elliptic sinh-Gordon
with the elliptic sine-Gordon.

5 Construction of harmonic maps from a surface to a hyperbolic
plane via Bäcklund transformation.
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Sinh-Gordon type equations

(Hyperbolic) Sine-Gordon

wxx − wyy = sin(2w) ⇔ □w = sin(2w).

Hyperbolic Sinh-Gordon

wxx − wyy = sinh(2w) ⇔ □w = sinh(2w).

Elliptic Sine-Gordon

wxx + wyy = sin(2w) ⇔ ∆w = sin(2w).

Elliptic Sinh-Gordon

wxx + wyy = sinh(2w) ⇔ ∆w = sinh(2w).
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Sinh-Gordon type equations

Generalised sinh-Gordon

□δw =
2a

κ
sinh (2κw) ,

where □δ =
∂2

∂x2
− δ2 ∂2

∂y2 , with δ, κ ∈ {1, i} and a ∈ R.

δ κ Equation

1 1 wxx − wyy = 2a sinh(2w)

1 i wxx − wyy = 2a sin(2w)

i 1 wxx + wyy = 2a sinh(2w)

i i wxx + wyy = 2a sin(2w)
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Sine-Gordon equations and Geometry

Applications

1 Surfaces of constant negative curvature in R3.

2 Hopf’s conjecture and Wente Torus.

3 Hypersurfaces of constant sectional curvature.

4 Harmonic diffeomorphisms between Riemann surfaces.

5 (Lorentz)-Wave maps.
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CMC surfaces and Sinh-Gordon equation

Theorem, Kenmotsu

Let a surface Σ : D → R3, where D ⊂ R2, be of constant and
non-zero mean curvature H and let p ∈ D be a non-umbilic point
of Σ. (That is, the two principal curvatures κ1 and κ2 are different
from each other at each point of the surface.) Then there exists
isothermal coordinates (x , y) in a neighborhood U(p) ⊂ D:

IΣ =
e2w

2H
(dx2 + dy2), IIΣ = ew coshwdx2 + ew sinhwdy2,

where w = w(x , y) satisfies the elliptic sinh-Gordon equation

∆w + H sinh(2w) = 0.

Conversely, for a given positive number H and a solution w of the
elliptic sinh-Gordon, there exists a CMC surface uniquely up to
isometries of R3 with fundamental forms as above.
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Harmonic maps

Differential of a map

Let (Mm, g) and (Nn, h) smooth Riemannian manifolds equipped
with local coordinates (x1, x2, ..., xm) and (y1, y2, ..., yn) and a
C∞ map u : M → N. We define the differential of u, du and its
Hilbert-Schmidt norm in local coordinates

|du|2 = g ijhαβ(u)

(
∂uα

∂x i

)(
∂uβ

∂x j

)
.

Energy density

Let u : (M, g) → (N, h) a C∞ map. We define the energy density
as

e(u)(x) =
1

2
|du|2(x), x ∈ M.
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Harmonic maps

Energy of a map

Let (M, g) be compact. We define the energy of a map, the
Dirichlet integral, as

E (u) =

∫
M
e(u)dM.

Harmonic maps

A map u : (M, g) → (N, h) is called harmonic if it is a critical
point of the energy integral.

Euler-Lagrange equations-Tension field

τ(u)γij = ∇(du)γij =
∂2uγ

∂x i∂x j
− Γkij

∂uγ

∂xk
+
∂uα

∂x i
∂uβ

∂x j
Γ̃γαβ(u) = 0
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Harmonic maps

Examples of harmonic maps

1 Constant maps and identity maps.

2 Isometries are harmonic maps. Note that the composition of a
harmonic map with an isometry is harmonic.

3 Minimal submanifolds in Rn have harmonic Gauss maps.

4 A smooth map ϕ : A → Rn , A ⊂ Rm is harmonic if-f each
component is a harmonic function.

5 A smooth map ϕ : (M, g) → Rn is harmonic if-f each of its
components is a harmonic function on (M, g).

6 Let ϕ : (M, g) → (N, h) harmonic map and
f : (N, h) → (P, k) totally geodesic then f ◦ ϕ is harmonic.

7 The holomorphic maps between Kähler manifolds are
harmonic.
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Harmonic maps between Riemann surfaces

Isothermal coordinates

Let u : M → N be a map between Riemann surfaces (M, g),
(N, h). The map u is locally represented by u = u(z , z̄) = R + iS ,
where z = x + iy . From now on, we use the standard notation:

∂z =
1

2
(∂x − i∂y ), ∂z̄ =

1

2
(∂x + i∂y ).

Consider an isothermal coordinate system (x , y) on M such that
g = ef (z,z̄)|dz |2, where z = x + iy , and an isothermal coordinate
system (R,S) on N such that h = eF (u,ū)|du|2, where u = R + iS .
The Gauss curvature on the target is given by the formula

KN(u, ū) = −1

2
∆F (u, ū)e−F (u,ū).
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Harmonic maps between Riemann surfaces

Harmonic map equation

In isothermal coordinates, a map between two surfaces is harmonic
if and only if it satisfies

∂zz̄u + ∂uF (u, ū)∂zu∂z̄u = 0.

Note that this equation only depends on the conformal structure of
N.

Proposition

If κ : Σ1 → Σ2 is a holomorphic or antiholomorphic map between
Riemann surfaces and f : Σ2 → N harmonic then so is f ◦ κ.
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Harmonic maps between Riemann surfaces

Hopf differential

The Hopf differential of u is given by

Λ(z)dz2 =
(
eF (u,ū)∂zu∂z ū

)
dz2.

We may assume that Λ does not vanish locally.

Propostion, Hopf

A necessary and sufficient condition for a C 2 map u with non
vanishing Hopf differential, with almost everywhere non vanishing
Jacobian, to be a harmonic map, is that

eF (u,ū)∂zu∂z ū = e−µ(z),

where µ(z) is a holomorphic function.
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Harmonic maps between Riemann surfaces

Theorem (Existence of harmonic maps between surfaces)

Let Σ1 and Σ2 are compact surfaces, ∂Σ2 = ∅ and π2(Σ2) = 0. If
ϕ : Σ1 → Σ2 is a continuous map with finite energy, then there
exists a harmonic map u : Σ1 → Σ2 which is homotopic to ϕ,
coincides with ϕ on ∂Σ1 in case ∂Σ1 ̸= ∅ and is energy minimizing
among all such maps.

Lamaire (J. Diff. Geom., 1978, Ann. Sc. Norm. Sup. Pisa, 1982).
Sacks-Unlenbeck, Case ∂Σ1 = ∅ (Ann. Math., 1981).
Schoen-Yau (Ann. Math., 1979)
Jost (M. Z., 1983)
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Harmonic maps between Riemann surfaces

Propostion, Minksy (J. Diff. Geom.), Wolf (J. Diff. Geom.)

Let u : M → N be a harmonic map. Then, it satisfies the Beltrami
equation

∂z̄u

∂zu
= e−2w+iϕ,

and ϕ is a harmonic function, i.e. ∂2zz̄ϕ = 0. Furthermore, if ψ is
the conjugate harmonic function to ϕ, then

KN = − 2∂2zz̄w

sinh 2w
eψ,

where KN is the curvature of the target manifold N.
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Harmonic maps between Riemann surfaces

Propostion, Fotiadis-Daskaloyannis (Nonlinear Analysis)

Let w = w(x , y) be a solution of the sinh-Gordon equation

∆w = 2 sinh(2w)

where ∆ = ∂2xx + ∂2yy is the Laplacian with the flat metric and let
u = u(z , z̄) be a solution of the Beltrami equation

∂z̄u

∂zu
= e−2w ,

and z = x + iy lie in an open simply connected subset Ω of C
where the map u is a well defined C 2 map. Without loss of
generality we assume that Ω contains the origin. Then, u is a
harmonic map, if the curvature of the target is −1.
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Harmonic maps between Riemann surfaces

Propostion, Fotiadis-Daskaloyannis (Nonlinear Analysis)

Let Φ(x , y) = constant be the solution of the characteristics

dy

dx
= i coth(w(x , y)),

where w(x , y) is a solution of the elliptic sinh-Gordon
∆w = 2 sinh(2w). Then, a harmonic map that corresponds to w is
of the form

u(x , y) = ReΦ(x , y) + iImΦ(x , y) = R(x , y) + iS(x , y).
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Bäcklund transformation

Proposition, Fotiadis-Daskaloyannis (Nonlinear Analysis)

The system

∂xw − ∂yθ = −2 sinhw sin θ,

∂yw + ∂xθ = −2 coshw cos θ,

is a Bäcklund transformation that connects a solution w = w(x , y)
of the elliptic sinh-Gordon equation and a solution θ = θ(x , y) of
the sine-Gordon equation

∆θ = −2 sin(2θ).

Definition

We say that the pair of functions (w , θ) is in the class (BT ), if the
functions w and θ satisfy the system above.
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Elliptic functions

Elliptic Integral of first kind

u =

∫ ϕ

0

dt√
1− k2 sin2 t

, 0 < k < 1, ϕ = am(u, k)

Jacobi elliptic functions

sn(u, k) = sin(ϕ),

(
dy

dx

)2

= (1− y2)(1− k2y2), y(0) = 0

cn(u, k) = cos(ϕ),

(
dy

dx

)2

= (1− y2)(1− k2 + k2y2), y(0) = 1

dn(u, k) =

√
1− sin2(ϕ),

(
dy

dx

)2

= (y2−1)(1−k2−y2), y(0) = 1
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The elliptic sinh-Gordon equation

Tanh-method

If w is a solution of the sinh-Gordon equation of the form

w(x , y) = 2 arctanh(F (x)G (y)),

then the functions F ,G satisfy the differential equations

(F ′(x))2 = AF 4(x) + BF 2(x) + C

(G ′(y))2 = −CG 4(y)− (B − 4)G 2(y)− A,

where A,B,C are arbitrary constants.
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The elliptic sinh-Gordon equation

Proposition, Kenmotsu

Let w0 > 0, and α, β > 0, such that α+ β = coshw0 > 1.
Consider f (x), g(y) such that

(f ′)2 = f 4 − 4
(
1 + α2 − β2

)
f 2 + 42α2

(g ′)2 = g4 − 4
(
1 + β2 − α2

)
g2 + 42β2,

with f (0) = 0, f ′(0) = −4α, g(0) = 0, g ′(0) = −4β. Then the
function w(x , y) given by

tanh
w(x , y)

2
= tanh

w0

2
e−

∫ x
0 f (t)dte−

∫ y
0 g(s)ds ,

is such that ∆w = 2 sinh(2w) and w(0, 0) = w0.
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The elliptic sinh-Gordon equation

Definition of (BT0) Class

If (w , θ) satisfy the Bäcklund transformation with initial data
wy (x , 0) = 0 and θ(0, 0) = π

2 , then we say that (w , θ) belong in
(BT0) class.

X = X (x) =

∫ x

0
coshw(t, 0)dt =

∫ x

0

1 + F 2(t)G 2(0)

1− F 2(t)G 2(0)
dt,

Y = Y (x , y) =

∫ y

0
sinhw(x , s)ds =

∫ y

0

2F (x)G (s)

1− F 2(x)G 2(s)
ds.
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The elliptic sinh-Gordon equation

Tanh-method and Bäcklund transformation, P., Papageorgiou,
Fotiadis, Daskaloyannis (Rev. Mat. Comp.)

If w(x , y) = 2 arctanh(F (x)G (y)) a solution of the elliptic

sinh-Gordon and let b(x) = F ′(x)
2F (x) and (w , θ) ∈ (BT0), then

tan
θ(x , y)

2
=

1

b(x)

(√
b2(x)− 1 tan(J1(x) + J2(x , y))− 1

)
,

is a family of solution of the elliptic sine-Gordon, where

J1 = J1(x) = arctan

(
b(x) + 1√
b2(x)− 1

)
,

J2 = J2(x , y) =
√
b2(x)− 1 Y (x , y).
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The elliptic sinh-Gordon equation

Proposition P. (J. Elliptic and Parabolic Equ)

If w is a solution of the elliptic sinh-Gordon equation of the form

sinhw(x , y) = tan(A(x) + B(y)),

then the functions a(x) and b(y) satisfy the differential equations

(a′(x))2 = −(a(x))4 + c1(a(x))
2 + c2,

(b′(y))2 = −(b(y))4 + (8− c1)(b(y))
2 + c3,

where a(x) = A′(x), b(y) = B ′(y) and c1, c2 and c3 are constants
such that 4c1 = 16 + c3 − c2.
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The elliptic sinh-Gordon equation

Corollary P. (J. Elliptic and Parabolic Equ)

By using the initial conditions A′(0) = a(0) = B ′(0) = b(0) = 0,
we have c2 = a′(0)2 = 16α2, c3 = b′(0)2 = 16β2 and
c1 = 4(1− α2 + β2) (α, β ∈ R) and the equations of the previous
slide turn into

(a′(x))2 = −(a(x))4 + 4(1− α2 + β2)(a(x))2 + 16α2,

(b′(y))2 = −(b(y))4 + 4(1 + α2 − β2)(b(y))2 + 16β2.
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Example

Let a solution of the elliptic sinh-Gordon

sinhw(x , y) =
sinh(2x) + sinh(2y)

1− sinh(2x) sinh(2y)
.

We have to solve the following equation to construct the
corresponding harmonic map:

dy

dx
= i cothw(x , y) = i

cosh(2x) cosh(2y)

sinh(2x) + sinh(2y)
.
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Example

By calculations we find that a corresponding harmonic map is

u(x , y) = R(x , y) + iS(x , y),

R(x , y) = sech(2y)− sinh(2x) tanh(2y),

S(x , y) = sinh(2x)sech(2y) + tanh(2y)− 2y .

An implicit formula for the metric on the target of curvature −1 is

eF (u,ū)

4
dudū =

cosh2(2x) cosh2(2y)dx2 + (sinh(2x) + sinh(2y))2dy2

(1− sinh(2x) sinh(2y))2
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The elliptic sinh-Gordon equation

Proposition P. (J. Elliptic and Parabolic Equ)

If θ(x , y) is a solution of the elliptic sine-Gordon equation of the
form

θ(x , y) = 2 arctan(F (x)G (y)),

then the functions F (x) and G (y) satisfy the following equations

F ′(x)2 = AF 4(x) + BF 2(x) + C ,

G ′(y)2 = CG 4(y)− (4 + B)G 2(y) + A,

where A,B and C are arbitrary constants.
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The elliptic sinh-Gordon equation

Y = Y (y) =

∫ y

0
cos θ(0, s)ds, X = X (x , y) =

∫ x

0
sin θ(t, y)dt.

Proposition P. (J. Elliptic and Parabolic Equ)

If θ(x , y) is a solution of the elliptic sine-Gordon equation of the
form θ(x , y) = 2 arctan(F (x)G (y)) with initial conditions
F ′(0) = 0 and w(0, 0) = 0 then

tanh(
w(x , y)

2
) =

2− K tan(Y ) +
√
K 2 + 4 tanh(

√
K2+4
2 X )

√
K 2 + 4 + (2− K tan(Y )) tanh(

√
K2+4
2 X )

,

is a family of solutions of the elliptic sinh-Gorodon, where

K = K (y) = H′(y)
H(y) and H(y) = 1

G(y) .
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The elliptic sinh-Gordon equation

Proposition P. (J. Elliptic and Parabolic Equ)

If θ is a solution of the elliptic sine-Gordon equation of the form

sin θ(x , y) = tanh(C (x) + D(y))

then the functions c(x) and d(y) satisfy the differential equations

(c ′(x))2 = (c(x))4 + c4(c(x))
2 + c5,

(d ′(y))2 = (d(y))4 − (8 + c4)(d(y))
2 + c6,

where c(x) = C ′(x), d(y) = D ′(y) and c4, c5, c6 are arbitrary
constants such that 16 + 4c4 = c6 − c5.
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The elliptic sinh-Gordon equation

X (x) =

∫ x

0
sin θ(t, 0)dt, Y (x , y) =

∫ y

0
cos θ(x , s)ds.

Proposition P. (J. Elliptic and Parabolic Equ)

If θ(x , y) is a solution of the elliptic sine-Gordon of the form
sin θ(x , y) = tanh(C (x) + D(y)) and d(0) = 0 then

tanh(
w(x , y)

2
) = L

tanh(w(0,0)
2 )e−2X + L tan(

√
|4−c2(x)|

2 Y )

L− tanh(w(0,0)
2 )e−2X tan(

√
|4−c2(x)|

2 Y )
,

where L = L(x) =

√
|4−c(x)2|
c(x)−2 , is a solution of the elliptic

sinh-Gordon.
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Construction of harmonic maps

Lemma P., Papageorgiou, Fotiadis, Daskaloyannis (Rev. Mat.
Comp.)

Assume that (w , θ) ∈ (BT ). Then, there exist functions R and S
such that

∂xS = 2S coshw sin θ,

∂yS = 2S sinhw cos θ,

∂xR = 2S coshw cos θ,

∂yR = −2S sinhw sin θ.

Let (R, S) satisfy the system above. Then,

u(x , y) = R(x , y) + iS(x , y)

is the harmonic map to the hyperbolic plane that corresponds to w .
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Construction of harmonic maps

I1 = I1(x) =

∫ x

0
coshw(t, 0) sin θ(t, 0)dt,

I2 = I2(x , y) =

∫ y

0
sinhw(x , s) cos θ(x , s)ds,

I3 = I3(x) =

∫ x

0
e2I1(t) coshw(t, 0) cos θ(t, 0)dt,

I4 = I4(x , y) = e2I1(x)
∫ y

0
e2I2(x ,s) sinhw(x , s) sin θ(x , s)ds.
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Construction of harmonic maps

Proposition P., Papageorgiou, Fotiadis, Daskaloyannis (Rev. Mat.
Comp.)

Define the function S by

S(x , y) = S(0, 0)e2(I1+I2),

and the function R by

R(x , y) = R(0, 0) + 2S(0, 0)(I3 − I4).

Then,
u(x , y) = R(x , y) + iS(x , y)

is the harmonic map that corresponds to w . The domain of R and
S is the largest possible open simply connected subset of C
containing the origin so that the above expressions make sense.
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Construction of harmonic maps

Example 1

Suppose that tanh
(
w(x ,y)

2

)
= 2y

cosh 2x a solution of the elliptic

sinh-Gordon and consider the initial data R(0, 0) = 0,
S(0, 0) = −1

4 . Using the Bäcklund transformation we find that

tan
(
θ(x ,y)

2

)
= coth x the corresponding solution of the elliptic

sine-Gordon. Then,

I1 =
1

2
log cosh 2x ,

I2 =
1

2
log

(
1− 4y2

cosh2 2x

)
,

I3 = −x ,

I4 = 2y2 tanh 2x .

Giannis Polychrou, Aristotle University of Thessaloniki New examples of harmonic maps via Bäcklund transformation



Construction of harmonic maps

Example 1

Then u = R + iS where

R =
x

2
+ y2 tanh 2x

S =
y2

cosh 2x
− cosh 2x

4
.

The domain of definition of u is the set

Ω =

{
(x , y) : |y | < 1

2
cosh 2x

}
where the map is a well defined C 2 map whose Jacobian is almost
everywhere non vanishing.
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Construction of harmonic maps

Reminder

Family of solutions to elliptic sinh-Gordon

tanh

(
w(x , y)

2

)
= F (x)G (y).

X = X (x) =

∫ x

0
coshw(t, 0)dt =

∫ x

0

1 + F 2(t)G 2(0)

1− F 2(t)G 2(0)
dt,

Y = Y (x , y) =

∫ y

0
sinhw(x , s)ds =

∫ y

0

2F (x)G (s)

1− F 2(x)G 2(s)
ds.
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Construction of harmonic maps

Theorem P., Papageorgiou, Fotiadis, Daskaloyannis (Rev. Mat.
Comp.)

Assume that w(x , y) = 2 arctanh(F (x)G (y)), b(x) = F ′(x)
2F (x) and

(w , θ) ∈ (BT0). Define the functions S and R on the largest
possible open simply connected subset of C containing the origin
such that

S(x , y) = S(0, 0)
e2X (x)(sin θ(x , y) + b(x))

1 + b(x)
,

R(x , y) = R(0, 0) + S(0, 0)
e2X (x) cos θ(x , y)

1 + b(x)
,

Then u(x , y) = R(x , y) + iS(x , y) is the harmonic map that
corresponds to w .
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Construction of harmonic maps

Example 2

Consider S(0, 0) = 1, R(0, 0) = 0 and tanh w(x ,y)
2 =

√
2
2

cosh (2
√
2y)

cos (2x) .
We find

X = x + arctanh (tan (2x)), b = b(x) = tan (2x),

Y =
1√

1− tan2(2x)
arctanh

sinh (2
√
2y)√

1− 2 sin2 (2x)
,

and

tan
θ(x , y)

2
=

sinh (2
√
2y) + cos (2x)− sin (2x)

cos (2x)− sin (2x)− sinh (2
√
2y)

.
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Construction of harmonic maps

Example 2

S(x , y) = e2x
1 + 2 cos (4x)− cosh (4

√
2y)

1 + cosh (4
√
2y)− 2 sin (4x)

and

R(x , y) = −4e2x
cos (2x) sinh (2

√
2y)

1 + cosh (4
√
2y)− 2 sin (4x)

.

Therefore, u = R + iS is the harmonic map that corresponds to w .
The domain of definition of u is the set

Ω =

{
(x , y) :

∣∣∣∣∣
√
2

2

cosh (2
√
2y)

cos (2x)

∣∣∣∣∣ < 1

}

where the map is a well defined C 2 map whose Jacobian is almost
everywhere non vanishing.
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Construction of harmonic maps

Second main result P., Papageorgiou, Fotiadis, Daskaloyannis (Rev.
Mat. Comp.)

Let θ = θ(x) be a solution to the sine-Gordon equation such that∫ θ(x)

0

dψ√
1− 4

c2
sin2(ψ)

= c1 + cx ⇔ sin θ(x) = sn(cx + c1|
4

c2
),

where c , c1 ∈ R. Then the associated solution w to the Bäcklund
transformation is of the form

tanh
w(x , y)

2
= F (x)G (y) =

√
ab tan(

√
ab
2 y + k)

θ′(x)− 2 cos θ(x)
,

where a = 2 cos θ(0) + θ′(0), b = 2 cos θ(0)− θ′(0), and k ∈ C
such that tanh w(0,0)

2 = −
√

a
b tan(k).
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Construction of harmonic maps

Second main result P., Papageorgiou, Fotiadis, Daskaloyannis (Rev.
Mat. Comp.)

Then, the harmonic map u = R + iS that corresponds to w is

R(x , y) = R(0, 0) + S(0, 0) cosh2
w(0, 0)

2
J

(
2 cos θ(x)− θ′(x)

b

)
+ 2S(0, 0)

sin θ(x)(cos(
√
aby + 2k)− cos(2k))

2 cos θ(0) cos(2k)− θ′(0)
,

S(x , y) = S(0, 0)
2 cos θ(x) cos(

√
aby + 2k)− θ′(x)

2 cos θ(0) cos(2k)− θ′(x)
,

where

J(t) =

∫ t

1

u2 + tanh2 w(0,0)
2

u2
bu2 + a√

2(8− ab)u2 − a2 − b2u4
du.
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Construction of harmonic maps

Example 3

Consider the case when θ(0) = 0, θ′(0) = 1 and tanh w(0,0)
2 = 0.

Then, we compute

sin θ(x) = sn(x |4), tanh(
w(x , y)

2
) =

√
3 tan(

√
3
2 y)

θ′(x)− 2 cos θ(x)
,

I1(x) = I (x) =
1

2
log(2 cos θ(x)− θ′(x)),

I2(x , y) =
1

2
log

(
2 cos θ(x) cos(

√
3y)− θ′(x)

2 cos θ(x)− θ′(x)

)
,

I3(x) =
1

2

∫ 2 cos θ(x)−θ′(x)

1

u2 + 3√
10u2 − u4 − 9

du,

I4(x , y) = sin θ(x)(cos(
√
3y)− 1).
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Construction of harmonic maps

Example 3

Let S(0, 0) = 1 and R(0, 0) = 0. Then, the corresponding
harmonic map then is u(x , y) = R(x , y) + iS(x , y), where

R(x , y) = J(2 cos θ(x)− θ′(x))− 2 sin θ(x)(cos(
√
3y)− 1),

S(x , y) = 2 cos θ(x) cos(
√
3y)− θ′(x),

where J(t) =
∫ t
1

u2+G2(0)
u2

bu2+a√
2(8−ab)u2−a2−b2u4

du.

The domain of definition of u is the set of{
(x , y) :

∣∣∣∣∣
√
3 tan(

√
3
2 y)

θ′(x)− 2 cos θ(x)

∣∣∣∣∣ < 1

}

where the map is a well defined C 2 map whose Jacobian is almost
everywhere non vanishing.
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Construction of harmonic maps

Example 4

Consider the solution of the elliptic sine-Gordon equation

tan

(
θ(x , y)

2

)
= 2y sec(2x).

Using the Bäcklund transformation, we calculate the solution of
the elliptic sinh-Gordon equation as

tanh

(
w(x , y)

2

)
=

cos(y)(sin(2x)− 2y) + sin(y)

cos(y) + (2y + sin(2x)) sin(y)
.
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Construction of harmonic maps

Example 4

We can now construct the corresponding harmonic map

u(x , y) = R(x , y) + iS(x , y),

R(x , y) =
cos(2y) cos2(2x) + 4y (sin(2x) + sin(2y)− y cos(2y))

4y2 + cos2(2x)
,

S(x , y) = 2x +
4y cos(2x) cos(2y)− 2 cos(2x)(sin(2x) + sin(2y))

4y2 + cos2(2x)
.

The metric on the target in implicit form is

I = 4
(3 + 8y2 − cos(4x) + 4 sin(2x)(sin(2y)− 2y cos(2y)))2dx2

(cos(2y)(1− 8y2 + cos(4x)) + 8y(sin(2x) + sin(2y)))2

+4
(8y cos(2y)− 4 sin(2x) + sin(2y)(8y2 + cos(4x)− 3))2dy2

(cos(2y)(1− 8y2 + cos(4x)) + 8y(sin(2x) + sin(2y)))2
.
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Construction of harmonic maps

Example 5

Consider sin(θ(x , y)) = tanh(C (x) + D(y)) a family of solutions of
the elliptic sine-Gordon. Then C ′(x) = c(x) =

√
2 tanh(

√
2x) and

D ′(y) = d(y) = −
√
2 tanh(

√
2y). Then we obtain a solution θ of

the elliptic sine-Gordon equation

tan(
θ(x , y)

2
) =

cosh(
√
2x)− cosh(

√
2y)

cosh(
√
2x) + cosh(

√
2y)

.

The corresponding solution w of the elliptic sinh-Gordon equation
via the Bäcklund transformation is given by

tanh(
w(x , y)

2
) =

√
2 sinh(

√
2y)√

2 sinh(
√
2x)− 2 cosh(

√
2x)

.
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Construction of harmonic maps

Example 5

We can calculate the integrals I1, I2, I3 and I4

I1(x) =

∫ x

0

cosh2(
√
2t)− 1

cosh2(
√
2t) + 1

dt = x − arctanh(
tanh(

√
2x)√

2
),

I2(x , y) =

∫ y

0

4
√
2f (x)g(x) sinh(

√
2s) cosh(

√
2s)

(f 2(x)− 2 sinh2(
√
2s))(g2(x) + cosh2(

√
2s))

ds

=
1

2
log

(
f 2(x) + 1− cosh(2

√
2y)

2g2(x) + cosh(2
√
2y) + 1

2g2(x) + 2

f 2(x)

)
,
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Construction of harmonic maps

Example 5

I3(x) =

∫ x

0
e2xe

−2 arctanh( tanh(
√
2x)√

2
) 4 cosh(

√
2t)

3 + cosh(2
√
2t)

dt

=
4e2x

4 cosh(
√
2x) + 2

√
2 sinh(

√
2x)

− 1

I4(x , y) =
2g2(x) + 2

f 2(x)

∫ y

0

sinh(
√
2s)(g2(x)− cosh2(

√
2s))

(g2(x) + cosh2(
√
2s))2

ds

= 2e2x(
cosh(

√
2y)(

√
2 sinh(

√
2x)− 2 cosh(

√
2x))

2 + cosh(2
√
2x) + cosh(2

√
2y)

−
√
2 sinh(

√
2x)− 2 cosh(

√
2x)

3 + cosh(2
√
2x)

)

where f (x) =
√
2 sinh(

√
2x)− 2 cosh(

√
2x), g(x) = cosh(

√
2x).
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Construction of harmonic maps

Example 5

To construct a harmonic map we use the initial conditions
S(0, 0) = 1/2 and R(0, 0) = 0

S(x , y) = e2x
2 + 3 cosh(2

√
2x)− cosh(2

√
2y)− 2

√
2 sinh(2

√
2x)

2 + cosh(2
√
2x) + cosh(2

√
2y)

.

R(x , y) = 4e2x

(
cosh(

√
2y)(2 cosh(

√
2x)−

√
2 sinh(

√
2x))

2 + cosh(2
√
2x) + cosh(2

√
2y)

)
− 2

Then u = R + iS a harmonic map from a surface to the upper-half
plane equipped with Poincaré metric.
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Future works

Non linear PDEs related to sine-Gordon

1 Double sine-Gordon and mixed sinh-cosh-Gordon.

2 Generalised sinh-Gordon with variable coefficient.

3 Boundary value problems.

4 Solutions using symmetries.

Harmonic maps

1 Harmonic maps in higher dimensions.

2 Harmonic maps between confromal manifolds.

3 Construction of biharmonic, exponential harmonic, p-harmonic
mappings between Riemannian surfaces.
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