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How do
we feed
(sustainably
and safely)
10 billion people?




Population, urbanization and food
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Food safety incidents cost S7B/year in the US UN FAO 2015 Status of the World's Soil Resources



PRIZE ESSAY

GRAND PRIZE WINNER

Benedetto Marelli

( Benedetto
Marelli received
undergraduate
degrees from
Politecnico di
Milano and a
PhD from McGill
University. After completing

his postdoctoral fellowship at
Tufts University, he started his
laboratory in the Department

of Civil and Environmental En-
gineering at the Massachusetts
Institute of Technology in late
2015. His research focuses on
nanomanufacturing of structural
biopolymers to engineer a new
generation of advanced materi-
als that can be interfaced with
food and plants. www.science.org/
doi/10.1126/science.abo4233

~ BIl|Prize for
Science | Innovation

INNOVATION

Biomaterials-based Innovation for Food Security

Biomaterials for boosting

food security

Renewable silk-protein technologies promote
plant growth and reduce food waste

By Benedetto Marelli

n the 20th century, new material-based
technologies have positively affected
many aspects of human life—including
health management, communication,
education, and transport—as well as
improved our access to energy, water,
and food. Continued technological advance-
ments to improve quality of life must now
consider sustainability alongside mitigation
of and adaptation to climate change (I).
Scientists and engineers are looking to liv-
ing systems to learn how to translate sus-
tainability principles into material design.
Soft matter and structural biopolymers (e.g.,
polysaccharides, proteins, and DNA) are
being used to design technologies that ad-
dress unmet challenges in the health, energy,
food, and education sectors. These natural

Marelli, Science, 376, 2022

polymers are biomaterials that can be ex-
tracted in high volumes and at low cost from
by-products of food and textile industries
and upscaled into advanced materials (see
the figure).

There is wide interest in the develop-
ment of biomaterials, but their applica-
tion in agro-food systems (i.e., all actors
and activities involved in food production,
distribution, regulation, and consumption)
has lagged. The infrastructure of agro-food
systems is responsible for more than 25%
of anthropogenic greenhouse gas (GHG)
emissions. These systems face pressure to
support an increasing world population
and to simultaneously minimize inputs
(e.g., water, fertilizers, pesticides) and mit-
igate environmental impact. For the first
time in history, the availability of arable
land has plateaued, and crop yields are
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Biomaterials-based Innovation for Food Security
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impact society
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Biomaterials can be designed to be interfaced with food and plants
Merits: edibility, nontoxicity, biodegradation
Requirements: scalable, ease of manufacturing, retrofit existing techniques
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Silk fibroin — form factors

Monoliths Microneedles Particles
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Polymorphic assembly

Regenerated fibroin solution

Marelli et al, PNAS, 2017
Sun and Marelli, Nat. Comm., 2019




Driving disorder to order transitions
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= N-terminal

hydrophobic domain (GAGAGS)
= hydrophilic domain (nonrepetitive)
= C-terminal

Inputs: water removal, pH, T, P, shear stress, electric field

Silk fibroin chains
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Micelle assembly of silk fibroin

in water due to the hydrophilic-
hydrophobic multi-block copolymer
structure.



Driving disorder to order transitions
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Silk fibroin chains

Highly-ordered [3-sheet nanoparticles

Micelle assembly of silk fibroin

in water due to the hydrophilic-
hydrophobic multi-block copolymer
structure.
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Templated disorder to order transitions

silk fibroin
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And once we know how to grow silk materials....

Edible Authentication Tag?

random pattern
laser = P

Micro-/Nanoparticles

Active Edible Coatings and Packaging
for Food Preservation
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Large-Scale, Proteinaceous Nanotube
Arrays with Programmable Hydrophobicity,
Oleophilicity, and Gas Permeability

Sun and Marelli Nano Lett. 2023




Silk Nanotube/pillar fabrication through nanoconfinement
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Control over size, density, morphology & silk polymorphs
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Super-hydrophobicity and Anti-fouling
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Superoleophilicity

Dibutyl Adipate
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Oil extraction from oil-water emulsions
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Improved gas barrier performance
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= Nanotube membranes show lower WVP than bulk
= |inear decrease of WVP w.r.t. the logarithm of the

nominal pore size (NPS) of nanotube membranes
= Hierarchical pore structures contribute to lower WVP



Edible Physical Unclonable Functions
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Edible Physical Uncloni\ble Functions

spray drying water MPs #1 g

l-l-b annealing . :. .
e 70% of agricultural products are | {E — - . O,
counterfeited in emerging countries "= - c o

amorphous silk MPs #2

- ‘ : 4 B templated crystallization

silk fibroin
solution

T

™ \__,«}

Bombyx mori

cocoons

-

o

Sun et al. [Marelli, Chandrakasan], Sci Adyv, (2023)

Counts [a.u.]

O

—silk MPs #1
—silk MPs #2

—Silk MPs #3
— silk MPs #4

800

microscope

readout

1200 1400
Raman Shift [cm™)

1000

digitization

1800




Edible Physical Unclonable Functions

Challenge: Authentication methods
suffer from poor performance and are
too complex to be used in rural areas

Solution: Silk-based, visual physical
unclonable functions

Rapid formation on complex surfaces of
tags that cannot be tampered and
embed unique, random patterns

Edible and biodegradable, yet resistant
to humidity and friction

* Interrogation with a cell-phone or
portable Raman spectrometer

enables 128-bit cryptographic key

* Silk PUF passes all standard NIST tests
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Engineering of seed microenvironment




Engineering of seed microenvironment

* No more arable land

* 3% of world energy is spent in
synthesizing nitrogen fertilizers

* Phosphate fertilizers production
will peak in 2033, causing shortage
afterwards

 Biofertilizers (plant growth-
promoting microbes) fix nitrogen,
solubilize phosphate, mitigate
stressors and increase plant health

* Translation is hinder by low viability
in anhydrous conditions

* 90% of agrochemicals go off-target

Zvinavashe et al, Nature Food, 2021 Zvinavashe et al, ACS J. Agric. Food Chem, 2021



Engineering of seed microenvironment
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Engineering of seed microenvironment

Isolation and culture of

> [Proliferation and growth ]

identified strains
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Engineering of seed microenvironment
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Engineering of seed microenvironment

Biofertilizer colony counting
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Engineering of seed microenvironment
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Engineering of seed microenvironment
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Engineering of seed microenvironment

- control
- control

Zvinavashe et al, Nature Food, 2021



Engineering of seed microenvironment
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Engineering of seed microenvironment

Coated Uncoated Saline soil

Seeds planted in saline soil. Coated seeds Saline soil obtained from Hiadna-Morocco
on the (left) and control (uncoated) seeds
on the right of each image. Zvinavashe et al, PNAS, 2019
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The end of the mouldy fruit A Silky Solution to the Problem of Wasted Food?
bowl? Scientists By DANIEL AKST

May 19, 2016 2:27 p.m. ET
dlSC()VCl' lnlCFOSCOplC Sllk Food waste is a big problem, and produce is particularly vulnerable. Largely due to
s - spoilage, 40-50% of the world’s fruit and vegetable output is wasted, according to a U.N.
covering to keep food fresh

estimate, along with a great deal of labor, water and energy

Silk Fibroin as Edible Coating for
Perishable Food Preservation

| Tech » 6 wonders of science you didn't know were made from silk

The food preserver

Marelli et al, Sci. Rep. , 2016
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Through a natural
and edible protective
layer.










Silk-Covalent Organic Framework climate-specific packaging
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Silk-Covalent Organic Framework climate specific packaging
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Silk-Covalent Organic Framework climate-specific packaging
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B’ Cao et al, Adv. Mater,, 2023 ; Cao et al, Adv. Sci., 2020



Multiscale and precise dellvery of payloads i in planta
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Multiscale and precise delivery of payloads in planta
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Release(%)

Multiscale and precise delivery of payloads in planta

Azoalbumin
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Multiscale and precise delivery of payloads in planta

Cao et al, Adv Sci, 2020



Multiscale and precise delivery of payloads in planta

injec:ci‘on site
Source = Sink

Cao et al, Adv Sci, 2020



Multiscale and precise delivery of payloads in planta
x% phytoinjector

< xylemflo Phytoinjector is a point source but is considered via
: mass conservation instead of a source.
x:=0

injection site

convection-diffusion equation for incompressible fluid

without source or sink Upon all payloads released
dc
—=V-(DVc)—v-Vc +00
at My, = j c(x,t)dx
1-dimension —o
dc d%c dc
ot D 9x2 ua We here only focus on the release period where
IC: (x,0)=0 M; < 0.6M,,
BCs: c(0,t) = cq(t), c(o0,0)=0
Concentration distribution It is hard to get an analytical solution for the integral
ux_u?t Co (T) ult_ x? equation. So we tried a numerical method.
c(x,t) = e2D 4D f 4D 4D(t-T) g
4-7TD J(@t—1)3

Co(t) determined by mass conservation:

My = Mokt = [*7c(x, t)dx (M, < 0.6M,)

M, < 0.6M, is required by power law release. .
Cao et al, Adv Sci, 2020



Multiscale and precise delivery of payloads in planta

By Taylor series (n denotes time and i is position) ch =
dc\" M-l To determine cy(t) , we used mass conservation.
dat/; A

| Given a value Ac
( ) i+1 Cn + O(sz) n+1 _‘n
No Co co + Ac

+ 0(Ax?) Calculate ¢**? for all i

n+1 n n n n n n
C; — C; Ci 1 — 2¢Ci + C; Ciiq1 — Cj

l l 1+1 [A -1 1+1 -1
——=1D —u + 0(At, Ax?)

n+1

Accept ¢;

l____________J

ult DAt ) Constants:

Tt =c'—— (1 — )+ — (]t — 2¢]t + ]t 4
' LT A T Ax2 T l l D = 4x10719m?2 /s (small dye molecule, ~600Da)
u = 5x10"°m/s (based on observation)
k = 0.038 (power law release, time unit minute)

n = 1.61 (power law release)
Cao et al, Adv Sci, 2020
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Multiscale and precise delivery of payloads in planta
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Wounding response induced by microneedles
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Delivery of hormones in planta - GA

........ ‘::CHZ

COOH

Gibelleric acid

SL-I-3

control injection

ML-I-3  ML-I-6

Cao et al, Adv Mater, 2022



GO enrichment analysis

Z-Score
15
1.0
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Z-scored expression level
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response to gibberellin

olefinic compound metabolic process
monocarboxylic acid metabolic process
monocarboxylic acid biosynthetic process
carboxylic acid biosynthetic process

xyloglucan:xyloglucosyl transferase activity
nitrate transmembrane transporter activity
glucosyltransferase activity

syncytium formation
response to gibberellin
regulation of hormone levels
hormone transport

auxin transport

auxin polar transport

xenobiotic transport
xenobiotic export

xenobiotic detoxification by transmembrane
export across the plasma membrane
nucleobase metabolic process

export from cell
export across plasma membrane

steroid hormone mediated signalling pathway
secondary metabolite biosynthetic process
secondary metabolic process

response to steroid hormone

cellular response to steroid hormone stimulus
brassinosteroid mediated signalling pathway

Top 6 enriched GO terms (FDR<0.01)
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