\qquad
\qquad

Moduli spaces of flat connections and the Atiyah-Bott classes

Yiannis Loizides
George Mason University

Conference on NCG and
Representation theory

March 2023

Moduli spaces of flat connections on surfaces
G - compact Lie group with $\pi_{0} G=\pi_{1} G=\{1\} \quad$ (cig. $S u_{N}$)
of - Lie (G), with positive definite integral $l \in \operatorname{Sym}^{2}\left(g^{*}\right)^{g}$ "kevel"
V - faithful representation of $G \quad\left(\right.$ eng. $\left.\mathbb{C}^{N}\right)$
Σ - compact connected oriented surface with $\partial \Sigma \cong S^{1}$ parametrized

A connection (on $\Sigma \times V$) is an operator

$$
d_{A}=d+A: \Omega^{\cdot}(\Sigma, V) \longrightarrow \Omega^{\cdot+1}(\Sigma, V)
$$

where $A \in \Omega^{\prime}(\Sigma, o y)$

$$
A(\Sigma)=\left\{d_{A} \mid A \in \Omega^{\prime}(\Sigma, g)\right\}
$$

currature $\quad F_{A}=d_{A}^{2}=d A+\frac{1}{2}[A, A] \in \Omega^{2}(\Sigma, g)$
$\operatorname{Map}(\Sigma, G) \subset A(\Sigma)$ by gange transformations

$$
\begin{aligned}
g: d_{A} & \longmapsto g \circ d_{A} \circ g^{-1}=d_{A^{9}}, \quad A^{g}=g A g^{-1}-d g g^{-1} \\
F_{A^{9}} & =g F_{A} g^{-1}
\end{aligned}
$$

d_{A} is flat if its curvature $F_{A}=0$

$$
A_{f l a t}(\Sigma)=\left\{d_{A} \mid A \in \Omega^{\prime}(\Sigma, g), d_{A}^{2}=0\right\}
$$

Action of $\operatorname{Map}(\Sigma, G)=\left\{g \in \operatorname{Map}(\Sigma, G)|g|_{\partial \Sigma}=1\right\}$ free and proper.

The moduli space of flat connections with framing along $\partial \Sigma$ is

$$
M_{\Sigma}=A_{f l a t}(\Sigma) / /_{M a p \partial_{2}}(\Sigma, G)
$$

The moduli space of flat connections with framing along $\partial \sum$ is

$$
\begin{equation*}
M_{\Sigma}=A_{f l a t}(\Sigma) / M_{M a p_{\partial}}(\Sigma, G) \tag{*}
\end{equation*}
$$

- smooth infinite-dim manifold
- weakly symplectic $\left((*)\right.$ is a symplectic quotient, $\omega_{A B}(a, b)=\int_{\Sigma} l(a, b)$, [Atiyah-Bott] $)$
- Hamiltonian action of $\operatorname{Map}(\Sigma, G) /_{\operatorname{Map} \partial}(\Sigma, G) \cong L G=\operatorname{Map}\left(S^{\prime}, G\right)$
proper moment map $\mu: M_{\Sigma} \longrightarrow \Omega^{\prime}\left(S^{\prime}, g\right) \subseteq \log ^{*}$

$$
\left.\left[d_{A}\right] \longmapsto A\right|_{\partial \Sigma}
$$

Hamiltonian loop group spaces
A proper Hamiltonian LG-space is an infinite-dim. weakly symplectic manifold (M, ω) carrying a Hamiltonian action of $L G=\operatorname{Map}\left(S^{\prime}, G\right)$ with proper moment map $\mu: M \longrightarrow \Omega^{1}\left(S^{1}, g\right) \subseteq L_{o f}{ }^{*} \quad$ [Meinrenken-Woodward]

$$
l(x) \omega=-d \int_{S^{\prime}} l(\mu, x) \quad \forall x \in L_{g}=\Omega^{0}\left(S^{1}, o g\right)
$$

Example orbits of $L G C \Omega^{\prime}\left(S^{1}, y\right) \quad$ (coadjoint orbits)

Rok $[M-W]$ use Soboler spaces of loops, and M is a Banach manifold. Suppress this for simplicity.

Motivation

$$
M_{\Sigma}=A_{f a t}(\Sigma) / M_{a p_{\partial}}(\Sigma, G) \xrightarrow{\mu} \Omega^{\prime}\left(s^{\prime}, g\right)
$$

\rightarrow symplectic quotient $M_{\Sigma, 0}=\mu^{-1}(0) / G$ is the moduli space of flat connections on $\sum \underset{\partial \Sigma}{ } \mathbb{D}$, known to algebraic geometers as the moduli space of semistable $G_{\mathbb{C}}$-bundles
\rightarrow topology of $M_{\Sigma, 0}$ can be studied via G-equivariant topology of M_{Σ}
Example Verlinde formula for the index of live bundles on $M_{\Sigma, 0}$ (Jeffrey-Kirwan, Bismut-Labourie, Alekseev-Meinrenken-Woodward,....)
\rightarrow in algebraic geometry, Teleman-Woodward proved a generalization of the Verlinde formula covering a broad collection of K-theory classes

K - theory
H - Hilbert space, $\operatorname{dim}(H)=\infty$

$$
\begin{array}{ll}
\tilde{F}=\{T \in \mathcal{B}(H) \mid T \text { is Fredholm }\} & \text { (norm topology) } \\
K(X)=[X, \tilde{F}] & \text { (topologist's/non-compact support) }
\end{array}
$$

Rok If x is loc. compact, $\operatorname{RKK}\left(X ; C_{0}(x), C_{0}(x)\right)$ in Kasparov's notation.

Rusk Variants with $T: H_{1} \rightarrow H_{2}$.

Rok G compact Lie group, $K_{G}(X)$.
$\bar{\partial}$ operators
Fix a complex structure on Σ.

$$
d_{A} \leadsto\left(d_{A}\right)^{0,1}=\bar{\partial}_{A}: \Omega^{0}(\Sigma, V) \longrightarrow \Omega^{0,1}(\Sigma, V)
$$

family $\left\{\bar{\partial}_{A} \mid d_{A} \in A_{\text {flat }}(\Sigma)\right\}$ is gange-equivariant, but does not define a K-class because

$$
\partial \Sigma \neq \phi \quad \Longrightarrow \quad \bar{\partial}_{A} \text { not Fredholm }
$$

Boundary conditions
On the complex disk $\mathbb{D}, \operatorname{ker}(\bar{\partial})$ is infin. te dimensional

$$
1, z, z^{2}, z^{3}, \cdots
$$

To cut down to finite dimensions, impose a boundary condition

$$
\left.f\right|_{\partial \mathbb{D}} \in B_{<0}\left(\frac{1}{i} \partial_{\theta}\right)=\left\{\sum_{n<0} a_{n} e^{i n \theta}\right\}
$$

then $\operatorname{ker}\left(\bar{\partial}^{b}: \Omega^{0}\left(\mathbb{D} ; B_{<0}\left(\frac{1}{i} \partial_{\theta}\right)\right) \longrightarrow \Omega^{0,1}(\mathbb{D})\right)=0$

On a general \sum, we do
 the same: the operator

$$
\begin{equation*}
\bar{\partial}_{A}^{b}: \Omega^{0}\left(\Sigma, V ; B_{00}\left(\frac{1}{i} \partial_{\theta}\right)\right) \longrightarrow \Omega^{0,1}(\Sigma, V) \tag{*}
\end{equation*}
$$

is Fred holm.

Rok: This is essentially the Atiyah-Patodi-Singer boundary condition. Note however that we take $B_{<0}\left(\frac{1}{i} \partial_{\theta}\right)$ to be independent of A.
(*) Slightly cleaner if we use a spin str on \sum. We assume this below,

The family $\left\{\bar{\partial}_{A}^{b} \mid d_{A} \in A(\Sigma)\right\}$ is not gauge - equirariant:

$$
B_{<0}\left(\frac{1}{i} \partial_{\theta}\right) \stackrel{g \in \operatorname{Map}(\Sigma, G)}{\sim} B_{<0}\left(g_{\partial} \cdot \frac{1}{i} \partial_{\theta} \cdot g_{\partial}^{-1}\right), \quad g_{0}=g l_{\partial \Sigma}
$$

Preserved by $g: \Sigma \rightarrow G$ such that $\left.g\right|_{\partial \Sigma}$ is constant, and $\frac{M_{\text {ap cont }}(\Sigma, G)}{M_{a p_{\partial}}(z, G)} \cong G$.
Thu [L] The family $\left\{\bar{\partial}_{A}^{b}\right\}$ descends to a continuous family of Fred holm operators parametrized by $M_{\Sigma}=\frac{A_{f b t}(\Sigma)}{M_{a p \partial}(\Sigma, G)}$.

Notation: $E^{\Sigma} V \in K_{G}\left(M_{\Sigma}\right)$

M - proper Hamiltonian LG-space, such as M_{Σ}

Next, define a homomorphism

$$
\text { index }_{\ell}: K_{T}(M)_{g c} \longrightarrow R^{-\infty}(T)=\mathbb{Z}^{\wedge}
$$

T- max. torus of G $\Lambda=\operatorname{Hom}(T, U(1))$
ge is a "growth condition" - to be explained

Thm [L] For $\ell \gg 0$, the coefficient of e^{λ} in index (ψ) computes a K-theoretic intersection pairing on a finite dimensional symplectic quotient of M.

A triple (x, ξ, f) where
X - finite even dim. T-equiv. Spin ${ }^{c}$
$\xi \in K_{T, C}(X) \quad$ (compactly supported K-theory)
$f: X \longrightarrow M \quad T$-equiv.
pairs with $K_{T}(M): \quad\langle[(x, \xi, f)], \psi\rangle=\operatorname{index}_{T}^{x}\left(\xi \otimes f^{*} \psi\right) \in R(T)$

Definition of index ${ }_{l}$ involves a non-compactly supported ξ.
\rightarrow paining only defined for subring $K_{T}(M) g c$
\rightarrow output in $R^{-\infty}(T)$

Construction of (x, ξ, f)
Tho [L-Meinrenken-Song] $\exists \operatorname{dim}(g)$-dim. submanifold $t \subseteq U \subseteq \Omega^{\prime}\left(S^{1}, t\right)$ which is transverse to gauge orbits (canonical up to homotopy).

$$
X=\mu^{-1}(U), \quad f=\text { inclusion }, \quad \xi=\mu^{*} \operatorname{Thom}\left(U, t^{*}\right)
$$

$$
X \circlearrowright \operatorname{Norm}_{L G}\left(t^{*}\right) \underset{\substack{\text { finite } \\
\text { index }}}{\rightleftharpoons} N=\left\{\begin{array}{c}
\text { closed } \\
\text { geodesic } \\
\text { in } T
\end{array}\right\} \cong T \times \Pi \quad, \quad \Pi=\operatorname{Hom}\left(S^{1}, T\right)
$$

The [L-Meinrenken-Song] \exists canonical Spin ${ }^{\text {c }}$ structure on X induced by a compatible almost complex structure on the symplectic manifold M.

Grow th condition

$$
N=\left\{\begin{array}{c}
\text { closed } \\
\text { geodesesics } \\
\text { in } T
\end{array}\right\}
$$

Assume the $K_{T}(M)$ - class represented by a smooth T-equiv. family of operators with compact resolvent:

$$
\varepsilon^{+} \supseteq \operatorname{dom}(Q) \xrightarrow{Q} \varepsilon^{-}
$$

(ε, Q) satisfies the $g c$ if
(1) $\left.E\right|_{X}$ is N-equiv., using the norm topology on $\operatorname{Aut}\left(\left.\varepsilon\right|_{X}\right)$
(2) $\exists N$-equiv. connection $\nabla^{\varepsilon \mid x}$ preserving $\left.\operatorname{dom}(Q)\right|_{X}$ such that $\left.\nabla^{\left.\varepsilon\right|_{X}} Q\right|_{X}$ is a bounded section of $T^{*} X \otimes \mathcal{B}\left(\left.\varepsilon\right|_{X}\right)$

Rok $\left.\left.\operatorname{dom}(Q)\right|_{X} \subseteq \mathcal{E}^{+}\right|_{X}$ not required to be N-invariant.

Finite rank N-equiv. vector bundles satisfy the $g c$.

Thu [L] The family of Fred holm operators on M_{Σ} induced by $\left\{\bar{\partial}_{A}^{b} \mid d_{A} \in A_{\text {flat }}(\Sigma)\right\}$ satisfies the $g c$.

There are k-classes that do not satisfy the $g c$.

Rok The 'size' of $K_{T}(M)_{g c}$ in $K_{T}(M)$ remains unclear (tome).

Thu [L] There is a homomorphism

$$
\operatorname{index}_{l}: K_{T}(M)_{g c} \longrightarrow R^{-\infty}(T)=\mathbb{Z}^{\wedge}
$$

that takes $[(\varepsilon, Q)]$ to the L^{2}-index of $D_{x, \xi}^{\mathcal{L}} \underset{\nabla^{\varepsilon}}{\hat{\otimes}}|+| \hat{\theta} Q_{x}$
$\mathcal{L}=$ prequantum line bundle on M, at level ℓ

$$
\text { i.e. } \quad c_{1}(\mathcal{L})=[\omega] \in H^{2}(M), \mathcal{L} \bigcirc \widehat{L G}^{(\ell)}
$$

Rank \mathcal{L} does not satisfy the ga.
Rok Generalizes [L-Song], which treated finite rank N-equiv. vector bundles.

Example $\Sigma=\mathbb{D}, \quad M_{\mathbb{D}} \cong L G / G$ ("smooth a affine Grassmanion")

$$
\begin{aligned}
& X \sim M_{D}^{T \times S_{\text {rot }}^{1}} \cong \Pi=\operatorname{Hom}\left(S^{1}, T\right) \stackrel{\ell}{\stackrel{l}{\hookrightarrow}} \Lambda=\operatorname{Hom}(\pi, \mathbb{Z}) \\
& \hat{L}_{\pi \text {-orbit }} \text { of trivial connection on } \mathbb{D} \\
& \operatorname{index}_{k}\left(E^{\mathbb{D}} V\right)=J \sum_{\eta \in \pi} e^{\eta} \cdot \operatorname{index}\left(\partial_{\tilde{\eta}}^{b}\right) \quad, \quad J=\begin{array}{c}
\text { Well } \\
\text { denominator } \\
f_{\text {or }} G
\end{array} \\
& =J \sum_{\eta \in \pi} e^{\eta}\left\langle d x_{v}, \eta\right\rangle
\end{aligned}
$$

where $\quad X_{v}(u)=\operatorname{Tr}_{v}\left(p_{v}(u)\right), u \in T$ character of $\left(v, \rho_{v}\right)$

$$
\operatorname{index}_{k}\left(E^{\mathbb{P}} V\right)=J \sum_{\eta \in \pi} e^{\eta}\left\langle d X_{v}, \eta\right\rangle
$$

Consider the generating series

$$
e^{t E^{\mathbb{D}} V}=\sum_{m \geqslant 0} \frac{t^{m}}{m!}\left(E^{\mathbb{D}} V\right)^{\otimes m} \in K_{T}\left(M_{\mathbb{D}}\right) \llbracket t \rrbracket \otimes \mathbb{Q}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{index}_{k}\left(e^{t E^{\mathbb{D}} v}\right)(u)=J(u) \sum_{\eta \in \pi} \Phi_{t}(u)^{\eta}, \quad \Phi_{t}(u)=u e^{-t \nabla x_{v}(u)} \\
& \begin{array}{c}
\text { (formal } \left.\begin{array}{c}
\text { diffeomeophism } \\
\text { of } T
\end{array}\right)
\end{array} \\
& \stackrel{\text { Poisson }}{=} \frac{J(u)}{\left|T_{l}\right|} \sum_{y_{\in} T_{l}} \frac{\delta_{J_{t}}(u)}{\operatorname{det}\left(1-t \nabla^{2} X_{V}(u)\right)} \\
& \text { of } T \text {) }
\end{aligned}
$$

Remarks on $K_{T}\left(M_{D}\right)$

$$
i^{*}: K_{T}\left(M_{D}\right) \longrightarrow K_{T}\left(M_{D}^{T \times S_{\text {rot }}^{1}}\right)=K_{T}(\pi)=F_{\text {un }}(\pi, R(T))
$$

is infective, image consists of
$\psi: \pi \rightarrow R(T)$ st $\quad\left(1-e^{\alpha}\right)^{m}$ divides $\Delta_{\alpha^{\alpha}}^{m} \psi$
for each $m>0$ and root α of G.
[Lam-Schilling-Shimozono], [Kostant-Kumar]
$\left(K_{T}\left(\mu_{D}\right) \cong \prod_{y \in \pi} R(T)\right.$ as $R(T)$-mod., Schubert basis)

Non-abelian localization
Recall index ${ }_{k}$ takes $\psi=[(\varepsilon, Q)] \in K_{T}(\mu)_{g e}$ to the L^{2}-index of

$$
D=\Phi_{x, \xi}^{2} \hat{\theta}_{\nabla^{i}}|+| \hat{\theta} Q_{x}
$$

Let $D_{s}=D+s c(k) \quad, \quad k=\omega^{-1}\left(d\|\mu\|^{2}\right) /\left(\mid+\|\mu\|^{2}\right)^{1 / 2}$

By considering $s \rightarrow \infty$ get
Chm [L] $\operatorname{index}_{\ell}(\psi)=\sum_{v \in \operatorname{Crit}^{\left(\| \| \|^{l}\right)}} \operatorname{index}{ }_{l, v}\left(\left.\psi\right|_{C_{v}}\right)$
Rok $C_{v} \cap \operatorname{supp}(\xi)$ compact, sum over v infinite.

Remarks on K

For M_{Σ}
Σ

the flow of $\rho \partial_{\theta} \in \mathcal{X}(\Sigma)$
induces a flow on M_{Σ}
gives the flow of k (up to reparametrization)

For $\Sigma=\mathbb{D}$, orbits close, $S_{\text {rot }}^{1}-$ action. The sum over $\Pi=M^{\top \times S_{\text {ret }}^{1}}$ was the non-abelian localization formula in that case.

Main theorem Under further assumptions on $\psi \in K_{T}(\mu)_{g e}$ one gets both a Kirillov-Berline-Vergne formula \& Atiyah-Bott-Segal-Singer formula. We'll just state the latter for the special case $M=M_{\Sigma}, \psi=E^{\Sigma} V$.
Tho $[L] \quad \operatorname{index}_{l}\left(E^{\Sigma} V\right)=\frac{1}{J} \sum_{\rho_{\in} T_{l}^{\text {mg }}}\left(\frac{J^{2}}{\left|T_{l}\right| \operatorname{det}\left(1-t \nabla^{2} X_{V}\right)}\right)^{1-\operatorname{genus}(\Sigma)} \delta_{\rho_{t}}$
where $\Phi_{t}\left(\zeta_{t}\right)=\zeta, \quad \Phi_{t}(u)=u e^{-t \nabla x_{v}(u)}$.
Rok This is a gange theoretic version of Teleman-Woodward's algebro-geometric result.
Rok Similar for any number of boundary components \& other Atiaah-Bott classes.

Proof out line

- Tian-Zhang/Braverman - type deformation of $D_{v}=D l_{u_{v}}$, with

$$
\operatorname{index}_{l}\left(E^{\Sigma} V\right)=\sum_{v \in C_{\text {rit }}\left(\|\mu\|^{2}\right)} \operatorname{index}\left(D_{v}+f_{v} c\left(\beta_{v}\right)\right) \quad \text { of } \quad D_{v}=\left.D\right|_{u_{v}}, w
$$

Work of Braverman \& Paradan-Vergne \longrightarrow index formula for $\xi \in t$ small:

$$
\operatorname{index}\left(D_{v}+f_{v} c\left(\beta_{v}\right)\right)(\exp \xi)=\int_{u_{v}} \hat{A}\left(u_{v}, \xi\right) \operatorname{Ch}\left(E^{\Sigma} V \otimes \mathcal{L}, \xi\right) P_{v}(\xi) T h(\xi)
$$

Non-abelian localization in ordinary cohomology (Paradan) (generalized coeffs)

$$
\operatorname{index}_{l}\left(E^{\Sigma} V\right)(\exp \xi)=\int_{X} \hat{A}(X, \xi) \operatorname{Ch}\left(E^{\Sigma} V \otimes \mathcal{L}, \xi\right) \operatorname{Th}(\xi)
$$

Compute $\operatorname{Ch}\left(E^{\Sigma} V, \xi\right)$ (families index the) \& $\eta^{*} \operatorname{Ch}\left(E^{\Sigma} V, \xi\right)=\operatorname{Ch}\left(E^{\Sigma} V, \xi\right)+\nabla_{\eta} \chi_{V}$ (exp ξ)

$$
\begin{array}{rl}
\Rightarrow \eta^{*} & C h \\
\int_{X} \square & \left.=\sum_{\eta \in \pi} \int_{X_{0}} \eta^{*} \nabla \otimes \mathcal{L}, \xi\right)=e^{\ell(\eta, \xi)+t \nabla_{\eta} X_{v}(\exp \xi)} \operatorname{Ch}\left(e^{t E^{\Sigma} v} \otimes \mathcal{L}, \xi\right) \\
\end{array}
$$

Thanks!

