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Dolbeault complex

▶ X compact complex manifold, n = dimX .

▶ E a holomorphic vector bundle on X .

▶ ∂
E
: Ω0,q(X ,E ) := C∞(X ,Λq(T ∗(0,1)X )⊗ E ) → Ω0,q+1(X ,E ) the

Dolbeault operator :

∂
E
(
∑
j

αjξj) =
∑
j

(∂αj)ξj .

ξj local holomorphic frame of E , and αj ∈ Ω0,q(X ).

(∂
E
)2 = 0.
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Riemann-Roch-Hirzebruch theorem

▶ Dolbeault cohomology of X with values in E :

Hq(X ,E ) := H(0,q)(X ,E ) :=
ker(∂

E |Ω0,q )

Im(∂
E |Ω0,q−1)

.

▶ Riemann-Roch-Hirzebruch theorem :

n∑
q=0

(−1)q dimHq(X ,E ) =

∫
X

Td(T (1,0)X ) ch(E ).

Td( ) Todd class, ch( ) Chern class
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Chern class

▶ hE Hermitian metric on E , ∇E Chern (holomorphic and Hermitian)
connection on (E , hE ), its curvature

RE = (∇E )2 ∈ Ω(1,1)(X ,End(E )).

▶

Td(E , hE ) = det

(
RE/2πi

eRE/2πi − 1

)
,

ch(E , hE ) = Tr
[
e−RE/2πi

]
.

They are closed forms in ⊕qΩ
(q,q)(X ).

▶ Td(E ) := [Td(E , hE )], ch(E ) := [ch(E , hE )] ∈ ⊕qH
q
dR(X ) do not

depend on hE . Td(E ) Todd class of E , ch(E ) Chern class of E .
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Riemann-Roch-Grothendieck theorem

▶ W ,S compact complex manifolds.
π : W → S holomorphic submersion with compact fiber X .

▶ E a holomorphic vector bundle on W .

▶ H•(X ,E |X ) fiberwise Dolbeault cohomology of X with values in E ,
forms the direct image R•π∗E of E , a coherent sheaf on S .
Ex : If dimH•(X ,E |X ) is constant, then Hq(X ,E |X ) are
holomorphic vector bundles on S .

▶ Riemann-Roch-Grothendieck theorem

n∑
q=0

(−1)q ch(Hq(X ,E |X )) =
∫
X

Td(T (1,0)X ) ch(E ) ∈ H•
dR(S).
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Kodaira vanishing theorem

▶ L a holomorphic line bundle on W .
E a holomorphic vector bundle on W .

▶ We suppose that L is positive along the fiber X , i.e., ∃ Hermitian
metric hL on L s.t. i

2πR
L defines a Kähler form along X :

RL(u, u) > 0 ∀0 ̸= u ∈ T (1,0)X .

▶ Kodaira vanishing theorem : ∃ p0 > 0 s.t. ∀p > p0,

Hq(Xb, L
p ⊗ E |Xb

)) = 0, ∀q > 0, b ∈ S .
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Asymptotic R-R-G theorem

▶ Let c1(E ) =
[

i
2π Tr[RE ]

]
∈ H2

dR(X )

▶ R-R-G Th : ∀k > 0, when p → +∞,

{ch(H0(X , Lp ⊗ E ))}(2k) = rk(E )

∫
X

c1(L)
n+k

(n + k)!
pn+k

+

∫
X

(
c1(E ) +

rk(E )

2
c1(T

(1,0)X )
) c1(L)

n+k−1

(n + k − 1)!
pn+k−1

+ O(pn+k−2) ∈ H2k
dR(S).

degree n + k polynomial on p.

▶ Question : Analytic refinement ?
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Set up

▶ W ,S compact complex manifolds. π : W → S holomorphic
submersion with compact fiber X .

▶ (E , hE ) a hol. Herm. vector bundle on W . (L, hL) a hol. Herm. line
bundle on W s.t.

ω =
i

2π
RL

defines a Kähler form along X .

▶ L2-metric hH
0(X ,Lp⊗E) on H0(X , Lp ⊗ E )

⟨s, s ′⟩ =
∫
X

⟨s, s ′⟩ (x)dvX (x).

dvX = (ω|X )n
n! Riemannian volume form along X .
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Problem

▶

R
H0(X ,Lp⊗E)
b = (∇H0(X ,Lp⊗E))2

∈ Λ2(T ∗
R,bS)⊗ End(H0(Xb, L

p ⊗ E ))

▶ Asymptotics of

(RH0(X ,Lp⊗E))k ∈ Λ2k(T ∗
R,bS)⊗ End(H0(Xb, L

p ⊗ E ))?

How to formulate the problem ?
dimH0(X , Lp ⊗ E ) degree n polynomial on p !
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Kernel of curvature

▶ R
H0(X ,Lp⊗E)
b (x , x ′) (x , x ′ ∈ Xb, b ∈ S) smooth kernel of

R
H0(X ,Lp⊗E)
b : H0 → Λ2

(
T ∗
R,bS

)
⊗ H0 w. r. t. dvXb

(x ′).

▶ For b ∈ S , x , x ′ ∈ Xb,

R
H0(X ,Lp⊗E)
b (x , x ′) ∈ π∗ (Λ2

(
T ∗
R,bS

))
⊗ (Lp ⊗ E )x ⊗ (Lp ⊗ E )∗x′ .

As End(L) = C, we get

R
H0(X ,Lp⊗E)
b (x , x) ∈ π∗ (Λ2

(
T ∗
R,bS

))
⊗ End (Ex) .
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Asymptotics of family Bergman kernel

▶ Theorem. ∃ b2,r ∈ C∞(W ,Λ2(T ∗
RS)⊗ End(E )) s.t. ∀ k, l ∈ N, ∃

Ck, l > 0 s. t. ∀ p ∈ N, p > p0,

∣∣∣RH0(X ,Lp⊗E)(x , x)−
k∑

r=0

b2,r (x)p
n−r+1

∣∣∣
C l (W )

⩽ Ck, l p
n−k ,

▶ ∆X is the (positive) Laplace operator of the fiber Xb,

√
−1

2π
b2,0 =

(ωn+1)(2)

(n + 1) (ωn)(0)
IdE = gα ∧ gβω

(
gH
α , gH

β

)
IdE ,

√
−1

2π
b2,1 =

((1
2
c1(TX , hTX ) +

√
−1

2π
RE

− 1

8π
gα ∧ gβ∆X (ω(g

H
α , gH

β ))
)
ωn

)(2)

/(ωn)(0),
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Local refinement of Asymptotic R-R-G theorem

▶ ∀k > 0, when p → +∞,

c1(H
0(X , Lp ⊗ E ),∇H0

)

=
i

2π

∫
X

Tr[RH0(X ,Lp⊗E)(x , x)]dvX (x)

= rk(E )

∫
X

c1(L,∇L)n+1

(n + 1)!
pn+1

+

∫
X

(
c1(E ,∇E ) +

rk(E )

2
c1(T

(1,0)X ,∇)
)c1(L,∇L)n

n!
pn

+ O(pn−1) ∈ Ω2(S).
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Toeplitz operator I

▶ We fix b ∈ S . Pp : C∞(X , Lp ⊗ E ) → H0(X , Lp ⊗ E ) orthogonal
projection. Bergman projection !

▶ For f ∈ C∞(X ,End(E )), Berezin-Toeplitz quantization of f :

Tf ,p = PpfPp ∈ End(H0(X , Lp ⊗ E )).

▶ A Toeplitz operator is a family of operators
{Tp ∈ End(H0(X , Lp ⊗ E ))}p∈N∗ s. t. ∃gl ∈ C∞(X ,End(E )) s.t.
∀k ∈ N, p ∈ N∗,

∥∥∥Tp −
k∑

l=0

p−lTgl ,p

∥∥∥ ⩽ Ck p
−k−1.

Berezin, Boutet de Monvel-Guillemin,
Bordemann-Meinrenken-Schlichenmaier, Ma-Marinescu
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Toeplitz operator II

▶ Ma-Marinescu : ∀f , g ∈ C∞(X ,End(E )), Tf ,p Tg ,p is a Toeplitz
operator, and

Tf ,p Tg ,p = Tfg ,p + T− 1
2π ⟨∇1,0f ,∂

E
g⟩ω, p

p−1 +O(p−2).

based on Xianzhe Dai-Kefeng Liu-Ma’s result on the off-diagonal
asymptotics expansion of Bergman kernel Pp(x , x

′).

▶ Thus Toeplitz operators form an algebra.
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Geometric Quantization (Kostant, Souriau)

▶ Classical phase space :(X , ω)
Quantum phase space H0(X , L)

▶ Classical observables : Poisson algebra C∞(X ),
Quantum observables : linear operators on H0(X , L)

▶ Semi-classical limit : H0(X , Lp), p → ∞ is a way to relate the
classical and quantum observables.
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Curvature operator is a Toeplitz operator

▶ Theorem. 1
pR

H0(X ,Lp⊗E)
b (b ∈ S) is a Toeplitz operator : ∃

g2,r ∈ C∞(W , π∗(Λ2(T ∗
RS))⊗ End(E )) s.t. ∀k ∈ N,

RH0(X ,Lp⊗E) =
k∑

r=0

Tg2,r ,p p
−r+1 +O(p−k),

▶ g2,0 = b2,0 = −2πi (ωn+1)(2)

(n+1) (ωn)(0)
IdE , formula for g2,1.

▶ Thus for l ∈ N, ( 1pR
H0(X ,Lp⊗E))l is a Toeplitz operator and we

compute the first two terms of the expansion.
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Curvature operator is a Toeplitz operator

▶ Take TH
R W = {u ∈ TRW : ω(u,X ) = 0 ∀ X ∈ TRX}, then

ω = ωX + ωH with ωH = gα ∧ gβω(gH
α , gH

β ).

We have

b2,0 = −2π
√
−1ωH ,

b2,1 =

((1
2
Tr[RT (1,0)X ] + RE +

√
−1

4
∆Xω

H
)
ωn

)(2)

/(ωn)(0),

g2,1 =
(
RE +

1

2
Tr[RT (1,0)X ]

)H

−
√
−1

4
∆Xω

H .
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Application

▶ We suppose ω = i
2πR

L defines a Kähler form on W .

▶ (H0(X , Lp ⊗ E ), hH
0

) is Nakano positive for p ≫ 0, more precisely,
∃C ,C0 > 0 s.t. ∀p > 0,

Ṙp > (Cp − C0) Id ∈ End(T (1,0)S ⊗ H0(X , Lp ⊗ E ))

as Hermitian matrices.
Here for u, v ∈ T

(1,0)
b S , ξ, η ∈ H0

b ,

⟨RH0

(u, v)ξ, η⟩ =: ⟨Ṙp(u ⊗ ξ), v ⊗ η⟩.
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Generalizations and applications

▶ (X , ω) compact symplectic manifold, dimR X = 2n.

▶ (L, hL) Hermitian (complex) line bundle on X .

▶ (E , hE ) Hermitian (complex) vector bundle on X .

▶ ∇L, ∇E Hermitian connections on (L, hL), (E , hE ).

▶ Fundamental hypothesis :

ω = c1(L,∇L) =

√
−1

2π
(∇L)2.

▶ gTX Riemannian metric on TX , J almost complex structure on TX ,
preserves ω and gTX .

▶ Simplification : gTX (·, ·) = ω(·, J·).
(Our results work without this assumption).
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Dirac operator Dp on the spinors

▶ Symplectic case :
Spinors : Λ· := Λeven(T ∗(0,1)X )⊕ Λodd(T ∗(0,1)X ).
Ep := Λ· ⊗ Lp ⊗ E .
Dirac operator Dp : C∞(X ,E±

p ) −→ C∞(X ,E∓
p ),

Dp =
∑
i

c(ei )∇
Ep
ei .

▶ Kähler case :

Dp :=
√
2
(
∂
Lp⊗E

+ ∂
Lp⊗E ,∗)

,

kerDp =H•(X , Lp ⊗ E ).
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Bergman kernel

▶ Pp orthogonal projection from C∞(X ,Ep) onto KerDp.

▶ Bergman kernel : Pp(x , x
′), (x , x ′ ∈ X ), is the C∞ kernel of Pp

associated to ωn

n! (x
′).

▶ Pp(x , x
′) ∈ (Λ· ⊗ Lp ⊗ E )x ⊗ (Λ· ⊗ Lp ⊗ E )∗x′ .

Pp(x , x) ∈ End(Λ·(T ∗(0,1)X )⊗ E )x .

Dai-Liu-Ma : Asymptotic expansion for Pp(x , x
′).

▶ A Toeplitz operator is a family {Tp} of linear operators
Tp : L2(X ,Ep) −→ L2(X ,Ep) s. t.
a)

Tp = Pp Tp Pp : Ker(Dp) → Ker(Dp),

b) ∃ gl ∈ C∞(X ,End(E )) s.t.∥∥∥Tp −
∑k

l=0 Tgl ,pp
−l
∥∥∥ ⩽ Ck p

−k−1.

Xiaonan Ma Joint with Weiping Zhang Superconnection and family Bergman kernel



Riemann-Roch-Grothendieck theorem
Family Bergman kernel

Idea of the proof

Curvature is a Toeplitz operator

▶ THW be a sub-bundle of TW such that

TW = THW ⊕ TX .

▶ For U ∈ TS , let UH ∈ THW s.t. π∗U
H = U, and

∇kerDp

U σ = Pp∇
Ep

UHPpσ.

▶ Theorem.

RkerDp = (∇kerDp )2 ∈ Λ2(T ∗S)⊗ End(kerDp)

is a Toeplitz operator.
It is useful in our work with Jean-Michel Bismut on the asymptotic
of the analytic torsion.
Also Martin Puchol’s work on the asymptotic of the holomorphic
analytic torsion
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Kähler case

▶ Kodaira embedding : X complex, E = C, L holomorphic. For p ≫ 0,

Φp : X ↪→ P(H0(X , Lp)∗), Lp = Φ∗
pO(1),

hL
p

= Pp(x , x) Φ
∗
ph

O(1).

The asymptotic expansion of Pp(x , x) when p → ∞ was studied by
Tian, Bouche, Ruan, Catlin, Zelditch, Lu, Xiaowei Wang,
Dai-Liu-Ma

▶ Tian, Ruan : 1
pΦ

∗
p(ωFS)− ω = O( 1p ).

▶ Donaldson : If Aut(X , L) is discrete. X has constant scalar curvature
Kähler metric ω ∈ c1(L), iff ∃ balance metric hp on Lp for any
p ≫ 1 and 1

p c1(L
p, hp) → ω.
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Spectral gap

▶ Theorem (Ma, Marinescu (2002)) : for p > 0,

Spec(D2
p) ⊂ {0} ∪ [4πp− CL,+∞[

Bismut-Vasserot · · ·
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Superconnection

▶ For σ ∈ C∞(S ,Ω0,•(X , Lp ⊗ E )) := C∞(W ,Ep),

∇Ω
Uσ = ∇Ep

UHσ for U ∈ TRS .

Bp superconnection on Λ(T ∗
RS)⊗̂Ω0,•(X , Lp ⊗ E ) :

Bp = Dp +∇Ω.

▶ For p ≫ 1, we have

RH0(X ,Lp⊗E) =
1

2π
√
−1

[∫
|λ|=2πp

(
λ− B2

p

)−1
λ dλ

](2)

.

Along the base S , Bp is of order 1, but B2
p is of order 0 along the

base S , and B2
p is a fiberwise second order elliptic operator, thus we

can fix b ∈ S and work fiberwisely as in the local family index
theorem.
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Superconnection

▶

(λ− B2)−1 = (λ− D2)−1 + (λ− D2)−1
dimR S∑
j=1

(
(B2)(>0)(λ− D2)−1

)j

,

P(B2)(1)P = 0.

▶ Spectral gap implies

RKer(DX
p ) = Pp(∇Ω)2Pp − Pp[∇Ω

p ,Pp]P
⊥
p [∇Ω

p ,Pp]Pp

= Pp(∇Ω)2Pp − P(B2
p )

(1)((B2
p )

(0))−1P⊥
p (B2

p )
(1)Pp

=
1

2π
√
−1

[∫
|λ|=2πp

(λ− B2
p )

−1λdλ

](2)

=
p

2π
√
−1

[∫
|λ|=2π

(
λ− 1

p
B2
p

)−1

λdλ

](2)

.
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Local family index theorem

▶ Bismut superconnection on Λ(T ∗
RS)⊗̂Ω0,•(X ,E ) :

At =
√
tD0 +∇Ω +

1

4
√
t
c(T ),

with T (U,V ) := −PTX [UH ,V H ] for U,V ∈ TS .

▶ Theorem (Bismut 1986). Trs [e
−A2

t ] is a closed form, and its
cohomology class does not depend on t, and is given by ch(kerD0).
Finally

lim
t→0

Trs [e
−A2

t ] =

∫
X

Td(T (1,0)X ,∇TX ) ch(E ,∇E ).

▶ ⇒ Atiyah-Singer family index theorem :

ch(kerD0) =

∫
X

Td(T (1,0)X ) ch(E ) ∈ H•
dR(S).
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