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Motivation: Numerical invariants from index classes
I x M — M free proper cocompact action of a discrete group I'.
» Primary invariants: higher index theory (Connes—Moscovici)

H*(T') = HC*(C[I]), ¢ — Ty

D invariant Dirac operator = Ind(D) € Ko(C/(I"))
If 7, extends to a subalgebra C[I'] C A C C}(I') we can pair:

(Ind(D), 7,) = /M/r AS(D) A V.

= higher signatures.
» Secondary invariants: higher APS index theorem
(Leichtnam—Piazza,...). Assume Dj is L?-invertible:

(D), 7) = [ AS(D) A v~ Ju.(Do).

ny(Da) higher n-invariant.

no(D) := \/17? /OOO Tr (De*tDZ) \C;l%

= hicher n-invariants.
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» Instead of discrete groups consider Lie groups (connected, real
reductive)

> Allow for general proper actions, instead of free actions

v

Consider delocalized cyclic cocycles.
» N.B. HC*(C2°(G)) is a module over

> (G) 1= {f € C™(G), f(hgh™! = f(g)}.

inv

A cocycle is called delocalized if its image in HC*(CZ°(G))m
is zero, where m := {f, f(e) =0}.

e

P> The Plancherel trace is localized at the identity:
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can we define a delocalized eta invariant 7g(D) using the heat
kernel?

if C is a smoothing perturbation can we define n,(D + C) 7

in particular, can we define the delocalized eta invariant of a
PSC metric g and of a G-equivariant homot. equivalence f ?

is there a delocalized APS index theorem 7
are there higher versions of these results ?

answer to all these questions is: Yes!
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Set up

G linear real reductive, connected Lie group, K maximal
compact subgroup. Equal rank: dim(G/K) = even.

Lafforgue algebra £+(G) defined by norm

n(f) = [ 1+ 1g)'= (@)l (e)lde.

» g+ |g| riemannian distance from eK to gK in G/K.
> =(g) is Harish-Chandra’s =-function = = [, a(kg) dk

Let g € G semisimple. Orbital integral
rolf)i= [ f(hgh™)d(hZ,)
G/Zq

defines a continuous trace on L+(G), for t big enough.

N.B. Other versions: Harish—Chandra algebra C(G), rapid
decay H*(G).
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Geometric set up

» G x X — X smooth, proper cocompact action.
» Abels’ theorem: there exists a compact slice S C X with
GxkS— X,
» Slice compatibility: decompose g =t @ p.
» metric: K-invariant metrics on S and p via

TX =G xk (TS@p)
» Spin©-structure: K-invariant Spin©-structures on S and p

» Dirac operator
D= DG,K®1 =+ 1®D5,

D¢ k Spin©-Dirac operator on L2(G) ® S,.
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Delocalized traces
> Subalgebras of the Roe algebra C*(X)C:

AG(X) 1 = (CR(G)@W2(8))f <K
= {d: G — V" (S), compact support, K x K invariant.

AT (X) 1 = (Le(G)OW(85)) K
={d: G — V™ °(S), rapid decay, K x K invariant.}

Product:

(1% D2)(g / ®1(gh™") o d(h)dh

> delocalized trace 7¥ : AF(X) — C given by:

7y (®) := 7¢(Trs()).
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Delocalized n-invariants

X is of bounded geometry and AF(X) C C*(X)C is closed under
holomorphic functional calculus:

e tD? _ 1/ id)\ € AX(X)
" 27i Je X - D2 G
Follows from analysis of the resolvent
\—D?= By + Gy, B, € \UC_2(X), G, € .AOGO(M),

with Cyx — 0 as Re(\) — oo.

Theorem (Piazza—P.-Song—Tang)

The following integral converges:

10)= 7z [ 0e )

N.B: No invertibility or gap assumptions!



About the proof

Large time behaviour: Recall D> = DZ  + D3 and decompose
2 2 2 K
PX)= P [L(e)@pa(S)]
)\;EO'(Ds)

Moscovici—Stanton give estimates
—_D? . .
\Tg/K(DQKe DG’K)\ < Cre~©@/t+73/2 resulting in convergence of

_tD? dt
7l mee T
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About the proof

Short time behaviour: rewrite (Hochs—Wang)
X(De %) = k dgd
20 = | [ calg)ex(n)ta(kilx, gx))dea,

with ke(x, y) kernel of De™** and ¢X cut-off function on X.
Let W C X open subset containing X&.

» Gaussian estimates for the heat kernel gives exponential decay
of

/X\W/GCG(g)CX(gX)tI“(kt(X,gX))dng, ast | 0.

» An argument of Zhang shows that

\}{/W/GCG(g)CX(gX)tT(kt(X,gx))dgdx —0(1) tlo.
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Manifolds with boundary

» Yy manifold with boundary, proper cocompact action of G, h

slice compatible metric,
> ¥ = Yy Upy, ((—00,0) x @Ys) manifold with cylindrical ends,

with extended metric h,
» Y b-manifold associated to \A/, metric h = %2 + h near 0Y.

Using b-calculus with e-bounds on the slice S C Y-
0 — AL(Y) — PAE(Y) 5 PAS 5 (cyl(9Y)) — 0.

Using Lafforgue’s algebra:

0 — AR(Y) — PAR(Y) L bAZR (cyl(9Y)) — O.
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Index classes

Invariant Dirac operator D
» of product type near 0Y
» Dyy is L%-invertible.
Choose:
» Q7 be a symbolic b-parametrix for D: DT Q% =1— R,
> Q"= Q7 — @ with @ =s((/(DF)(R;))
Connes—Skandalis projector
(D> =1-"°S_, QD1 =1-"5,)

pb .:< bst bs+(/+bs+)ab>
@\ bS_DF |—bs2

gives an index class

Indoc(D) = [P5] — [e1] € Ko(AF(Y)) = Ko(C*(Yo C ¥)©)



Relative index class
Short exact sequence

0—J—AB—0.



Relative index class
Short exact sequence

0—J—AB—0.

> [(P,Q,p:)] € Ko(A, B) with P, Q@ € M,(A) idempotents and
7(P) R 7(Q).



Relative index class
Short exact sequence

0—J—AB—0.

> [(P,Q,p:)] € Ko(A, B) with P, Q@ € M,(A) idempotents and
7(P) R 7(Q).

> excision isomorphism aey : Ko(J) — Ko(A, B) given by
aex([(P, Q)]) = [(P, Q,c)] with c denoting the constant path.



Relative index class
Short exact sequence

0—J—AB—0.

> [(P,Q,p:)] € Ko(A, B) with P, Q@ € M,(A) idempotents and
7(P) R 7(Q).
> excision isomorphism aey : Ko(J) — Ko(A, B) given by
aex([(P, Q)]) = [(P, Q,c)] with c denoting the constant path.
Connes—Moscovici projector:

—D-D* ~1p-D* (l—eDD+> -

e e 2 e —— 1D NN

Vo)== o € My(PAZ(Y),
e_iD D D+t | — efD D




Relative index class
Short exact sequence

0—J—AB—0.

> [(P,Q,p:)] € Ko(A, B) with P, Q@ € M,(A) idempotents and
7(P) R 7(Q).
> excision isomorphism aey : Ko(J) — Ko(A, B) given by
aex([(P, Q)]) = [(P, Q,c)] with c denoting the constant path.
Connes—Moscovici projector:

—D-D* ~1p-D* (l—eDD+> -

e e 2 e —— 1D NN

Vo)== o € My(PAZ(Y),
e_iD D D+t | — efD D

Relative index class
Indoo(D, Da) € Ko(PAZ (Y0), PAZR(cyl(DY))):
V(tDCyl) if te [1, +OO)

(V(D)aelaqt)7 te [1a+OO]a With q: - = { .
€ if t=o00
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Relative cyclic cocycles

» Recall the delocalized trace:

TgY L AX(Y) = C, Tgy(d)) = 7g(Trs(®)).

> Using the b-trace Tr2(k) := fé’ k(x,x)dx

T PAR(Y) 5 € n(0) = r(ThR(9),

» 1-cocycle on bAOGfR(cyl(aY)):

i

Ap, A
(0, 1) = o

/ 79Y (81(Ao, ) o (A1, )dA,

where the indicial family of A € bA%O’R(cyl(aY)), denoted
I(A, \), appears.
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Index pairings

» Recall Melrose formula for the b-trace:

PTrs([Ag, A1]) = /Tras Ix(Ao, \) o (A1, \))dA

» This implies

((b+B) — I ><Tg”>_0
0 —(b+ B) Ugy -

» and leads to

(1), Indso(D)) = (1", 0g), Indso (D, D).
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The delocalized APS Theorem

Theorem (Piazza—P.-Song—Tang)
Assume that Dy is L%-invertible.

(Y Indoo(D)) = /Yg cEAS4(Do) — %ng(Day),

where

A(YE) tr(ge)
A5(Do) = det'/2(1 — ge=R")

» Previous work of Hochs—=Wang-Wang assumes G/Z; compact.

» Closed manifold case is due to Hochs—Wang.
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Proof

Theorem (Piazza—P.—Song—Tang)
Assume that Dy is L?-invertible.

() Indoo (D)) = /Y cEAS,(Do) — %ng(oay),

where R .
A(YE) tr(geR)

det!/2(1 — ge=R")

ASg(Do) =

Proof in 2 steps:

(73" o) (D, Do) = 3 (%) + [ 08 (s ). ar)ee

» Pairing on the bulk with Tgy’r in the spirit of Melrose's proof
of the APS index theorem using Getzler rescaling.

» Pairing on the boundary with agy produces a long
complicated expression that we show that this equals 7,(D).
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Three types of perturbations

For the signature operator D is not invertible.
What if Dy is not L2-invertible?

1 0
D:DG,K®1+’Y®D57 = <0 _1)
» global perturbation on the slice: Dy = D + ~4, ¢ > 0,

> global perturbation Dg :== D+ ©, © > 0, not in the
L?-spectrum of D,

» general perturbation D + C with C € A%(X). (always exists!)
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Global perturbation on the slice

» Recall D = Dg x ® 1+ v ® Ds. The Connes—Kasparov
correspondence gives

D L? — invertible <= Ds L? — invertible

(Consider Dirac induction of ker(Ds))
» D =D+ ~9, 9 >0, smaller than the lowest eigenvalue of Ds.

1 oo .2\ dt
ng(Dy) = LIMSwﬁ/S T (Dﬁe tDﬂ) 7

» APS-type index theorem, by letting ¥ | 0:
Theorem (Piazza—P.-Song—Tang)

Assume G is of equal rank, i.e., has discrete series. Then

(1o (D0). 7 ) = [ cEAS4(Do)—3 (1g(Day) + {Inclo(er(Ds)). 7))
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Do =D+ ©, © >0, smaller that the gap.
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Global perturbation

> Assume D is not invertible, but has a spectral gap. Global
perturbation

Do =D+ ©, © >0, smaller that the gap.

» Perturbed delocalized n-invariant:

dt
ng(Do) —LIMsw\f/ Dee tD2)7

~

» APS-type index theorem, by letting © | 0:

Theorem (Piazza—P.-Song—Tang)
Assume that D has a spectral gap.

<Indoo(D19),7'gY>:/chgAS (Do)~ (ng(Day) (Mier(0p): 75
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General perturbations

» Previous cases work under a gap assumption. We now
consider

D+ C, CecAL(X), D+ Cis L* —invertible.

> Perturbed heat kernel: write (D + C)? = D?> + A, A € A%(X)
and expand in a Volterra series.
» Perturbed delocalized n-invariant:

dt
ng(D + C) f/ (D + C)etD+O?) L

Vit

» APS-type index theorem:
Theorem (Piazza—P.-Song—Tang)
Assume that Dy + B3° is L2-invertible.

1
(Indoe(D, Dy + BF), (7", 02)) = /yg c& AS¢(Do)—51g(Do+BY)
0



Higher versions

» Song—Tang: For any cuspidal parabolic subgroup
P = MAN C G and g € G semisimple there exists a cyclic
cocycle CDZ,) of degree dim(A) on L:(G).



Higher versions

» Song—Tang: For any cuspidal parabolic subgroup
P = MAN C G and g € G semisimple there exists a cyclic
cocycle CDZ,) of degree dim(A) on L:(G).

» = cyclic cocycle CD?g on AZ(Y).



Higher versions

» Song—Tang: For any cuspidal parabolic subgroup
P = MAN C G and g € G semisimple there exists a cyclic
cocycle CDZ,) of degree dim(A) on L:(G).

» = cyclic cocycle CD?g on AZ(Y).
» Higher APS index theorem:

Theorem (Piazza—P.—Song—Tang)
Assume that Dy is L%-invertible.

1
P — g
<¢Y,ga IndOO(D)> - /(YO/AN)g CYo/ANAS( Y()/AN)g — 577E(D3Ym)a

where Yy := M Xkam S is the slice decomposition of Y /AM with
its M-action.
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> f: Xy — Xo G-homotopy invariant. Fukumoto: there exists a
perturbation Bf making the signature operator on
X =X U (—X2):

pe(F) = ng(DX™ + Bx).

Bordism invariant by the APS index theorem.
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