Delocalized invariants for proper actions of Lie groups
 Based on joint work with P. Piazza, Y. Song and X. Tang

H. Posthuma

University of Amsterdam

March 10, 2023

Motivation: Numerical invariants from index classes

$\Gamma \times M \rightarrow M$ free proper cocompact action of a discrete group Γ.

Motivation: Numerical invariants from index classes

$\Gamma \times M \rightarrow M$ free proper cocompact action of a discrete group Γ.

- Primary invariants: higher index theory (Connes-Moscovici)

$$
H^{\bullet}(\Gamma) \rightarrow H C^{\bullet}(\mathbb{C}[\Gamma]), \quad \varphi \mapsto \tau_{\varphi}
$$

D invariant Dirac operator $\Longrightarrow \operatorname{Ind}(D) \in K_{0}\left(C_{r}^{*}(\Gamma)\right)$ If τ_{φ} extends to a subalgebra $\mathbb{C}[\Gamma] \subset \mathcal{A} \subset C_{r}^{*}(\Gamma)$ we can pair:

$$
\left\langle\operatorname{Ind}(D), \tau_{\varphi}\right\rangle=\int_{M / \Gamma} A S(D) \wedge \nu^{*} \varphi
$$

\Rightarrow higher signatures.

Motivation: Numerical invariants from index classes

$\Gamma \times M \rightarrow M$ free proper cocompact action of a discrete group Γ.

- Primary invariants: higher index theory (Connes-Moscovici)

$$
H^{\bullet}(\Gamma) \rightarrow H C^{\bullet}(\mathbb{C}[\Gamma]), \quad \varphi \mapsto \tau_{\varphi}
$$

D invariant Dirac operator $\Longrightarrow \operatorname{Ind}(D) \in K_{0}\left(C_{r}^{*}(\Gamma)\right)$
If τ_{φ} extends to a subalgebra $\mathbb{C}[\Gamma] \subset \mathcal{A} \subset C_{r}^{*}(\Gamma)$ we can pair:

$$
\left\langle\operatorname{Ind}(D), \tau_{\varphi}\right\rangle=\int_{M / \Gamma} A S(D) \wedge \nu^{*} \varphi
$$

\Rightarrow higher signatures.

- Secondary invariants: higher APS index theorem (Leichtnam-Piazza,...). Assume D_{∂} is L^{2}-invertible:

$$
\left\langle\operatorname{Ind}(D), \tau_{\varphi}\right\rangle=\int_{M / \Gamma} A S(D) \wedge \nu^{*} \varphi-\frac{1}{2} \eta_{\varphi}\left(D_{\partial}\right)
$$

$\eta_{\varphi}\left(D_{\partial}\right)$ higher η-invariant.

$$
\eta_{0}(D):=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \operatorname{Tr}\left(D e^{-t D^{2}}\right) \frac{d t}{\sqrt{t}}
$$

\Rightarrow higher ρ-invariants.

Generalization: from discrete groups to Lie groups.

- Instead of discrete groups consider Lie groups (connected, real reductive)

Generalization: from discrete groups to Lie groups.

- Instead of discrete groups consider Lie groups (connected, real reductive)
- Allow for general proper actions, instead of free actions

Generalization: from discrete groups to Lie groups.

- Instead of discrete groups consider Lie groups (connected, real reductive)
- Allow for general proper actions, instead of free actions
- Consider delocalized cyclic cocycles.

Generalization: from discrete groups to Lie groups.

- Instead of discrete groups consider Lie groups (connected, real reductive)
- Allow for general proper actions, instead of free actions
- Consider delocalized cyclic cocycles.
- N.B. $H C^{\bullet}\left(C_{c}^{\infty}(G)\right)$ is a module over

$$
C_{\mathrm{inv}}^{\infty}(G):=\left\{f \in C^{\infty}(G), f\left(h g h^{-1}=f(g)\right\}\right.
$$

A cocycle is called delocalized if its image in $\mathrm{HC}^{\bullet}\left(C_{c}^{\infty}(G)\right)_{m_{e}}$ is zero, where $m_{e}:=\{f, f(e)=0\}$.

- The Plancherel trace is localized at the identity:

$$
\tau_{e}(f):=f(e)
$$

Paolo's questions

- can we define a delocalized eta invariant $\eta_{g}(D)$ using the heat kernel?
- if C is a smoothing perturbation can we define $\eta_{g}(D+C)$?
- in particular, can we define the delocalized eta invariant of a PSC metric g and of a G-equivariant homot. equivalence f ?
- is there a delocalized APS index theorem ?
- are there higher versions of these results ?

Paolo's questions

- can we define a delocalized eta invariant $\eta_{g}(D)$ using the heat kernel?
- if C is a smoothing perturbation can we define $\eta_{g}(D+C)$?
- in particular, can we define the delocalized eta invariant of a PSC metric g and of a G-equivariant homot. equivalence f ?
- is there a delocalized APS index theorem ?
- are there higher versions of these results ?

The answer to all these questions is: Yes!

Outline

Delocalized η-invariants

APS index theorem

Perturbations

Higher versions

Set up

- G linear real reductive, connected Lie group, K maximal compact subgroup. Equal rank: $\operatorname{dim}(G / K)=$ even.

Set up

- G linear real reductive, connected Lie group, K maximal compact subgroup. Equal rank: $\operatorname{dim}(G / K)=$ even.
- Lafforgue algebra $\mathcal{L}_{t}(G)$ defined by norm

$$
\nu_{t}(f):=\int_{G}(1+\|g\|)^{t} \bar{\Xi}^{-1}(g)|f(g)| d g
$$

- $g \mapsto\|g\|$ riemannian distance from $e K$ to $g K$ in G / K.
- $\Xi(g)$ is Harish-Chandra's $\overline{\text { E-function }} \overline{\mathrm{E}}(\mathrm{g}):=\int_{K} a(\mathrm{~kg})^{\rho} d k$

Set up

- G linear real reductive, connected Lie group, K maximal compact subgroup. Equal rank: $\operatorname{dim}(G / K)=$ even.
- Lafforgue algebra $\mathcal{L}_{t}(G)$ defined by norm

$$
\nu_{t}(f):=\int_{G}(1+\|g\|)^{t} \Xi^{-1}(g)|f(g)| d g,
$$

- $g \mapsto\|g\|$ riemannian distance from $e K$ to $g K$ in G / K.
- 三 (g) is Harish-Chandra's E-function $\equiv(g):=\int_{K} a(\mathrm{~kg})^{\rho} d k$
- Let $g \in G$ semisimple. Orbital integral

$$
\tau_{g}(f):=\int_{G / Z_{g}} f\left(h g h^{-1}\right) d\left(h Z_{g}\right)
$$

defines a continuous trace on $\mathcal{L}_{t}(G)$, for t big enough.

Set up

- G linear real reductive, connected Lie group, K maximal compact subgroup. Equal rank: $\operatorname{dim}(G / K)=$ even.
- Lafforgue algebra $\mathcal{L}_{t}(G)$ defined by norm

$$
\nu_{t}(f):=\int_{G}(1+\|g\|)^{t} \bar{\Xi}^{-1}(g)|f(g)| d g,
$$

- $g \mapsto\|g\|$ riemannian distance from $e K$ to $g K$ in G / K.
- 三 (g) is Harish-Chandra's E-function $\equiv(g):=\int_{K} a(k g)^{\rho} d k$
- Let $g \in G$ semisimple. Orbital integral

$$
\tau_{g}(f):=\int_{G / Z_{g}} f\left(h g h^{-1}\right) d\left(h Z_{g}\right)
$$

defines a continuous trace on $\mathcal{L}_{t}(G)$, for t big enough.

- N.B. Other versions: Harish-Chandra algebra $\mathcal{C}(G)$, rapid decay $H_{L}^{\infty}(G)$.

Geometric set up

- $G \times X \rightarrow X$ smooth, proper cocompact action.

Geometric set up

- $G \times X \rightarrow X$ smooth, proper cocompact action.
- Abels' theorem: there exists a compact slice $S \subset X$ with $G \times_{K} S \xrightarrow{\cong} X$.

Geometric set up

- $G \times X \rightarrow X$ smooth, proper cocompact action.
- Abels' theorem: there exists a compact slice $S \subset X$ with $G \times{ }_{K} S \xrightarrow{\cong} X$.
- Slice compatibility: decompose $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$.
- metric: K-invariant metrics on S and \mathfrak{p} via $T X \cong G \times_{K}(T S \oplus \mathfrak{p})$.
- Spin ${ }^{c}$-structure: K-invariant Spin c-structures on S and \mathfrak{p}

Geometric set up

- $G \times X \rightarrow X$ smooth, proper cocompact action.
- Abels' theorem: there exists a compact slice $S \subset X$ with $G \times_{K} S \xrightarrow{\cong} X$.
- Slice compatibility: decompose $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$.
- metric: K-invariant metrics on S and \mathfrak{p} via

$$
T X \cong G \times_{K}(T S \oplus \mathfrak{p})
$$

- Spin ${ }^{c}$-structure: K-invariant Spin c-structures on S and \mathfrak{p}
- Dirac operator

$$
D=D_{G, K} \hat{\otimes} 1+1 \hat{\otimes} D_{S},
$$

$D_{G, K} S \operatorname{Sin}^{c}$-Dirac operator on $L^{2}(G) \otimes S_{\mathfrak{p}}$.

Delocalized traces

- Subalgebras of the Roe algebra $C^{*}(X)^{G}$:

$$
\begin{aligned}
\mathcal{A}_{G}^{c}(X): & =\left(C_{c}^{\infty}(G) \hat{\otimes} \Psi^{-\infty}(S)\right)^{K \times K} \\
& \cong\left\{\Phi: G \rightarrow \Psi^{-\infty}(S), \text { compact support, } K \times K\right. \text { invariant }
\end{aligned}
$$

Delocalized traces

- Subalgebras of the Roe algebra $C^{*}(X)^{G}$:

$$
\begin{aligned}
\mathcal{A}_{G}^{c}(X): & =\left(C_{c}^{\infty}(G) \hat{\otimes} \Psi^{-\infty}(S)\right)^{K \times K} \\
& \cong\left\{\Phi: G \rightarrow \Psi^{-\infty}(S), \text { compact support, } K \times K\right. \text { invariant }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{G}^{\infty}(X): & =\left(\mathcal{L}_{t}(G) \hat{\otimes} \Psi^{-\infty}(S)\right)^{K \times K} \\
& \cong\left\{\Phi: G \rightarrow \Psi^{-\infty}(S), \text { rapid decay, } K \times K \text { invariant. }\right\}
\end{aligned}
$$

Delocalized traces

- Subalgebras of the Roe algebra $C^{*}(X)^{G}$:

$$
\begin{aligned}
\mathcal{A}_{G}^{c}(X): & =\left(C_{c}^{\infty}(G) \hat{\otimes} \Psi^{-\infty}(S)\right)^{K \times K} \\
& \cong\left\{\Phi: G \rightarrow \Psi^{-\infty}(S), \text { compact support, } K \times K\right. \text { invariant }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{G}^{\infty}(X): & =\left(\mathcal{L}_{t}(G) \hat{\otimes} \Psi^{-\infty}(S)\right)^{K \times K} \\
& \cong\left\{\Phi: G \rightarrow \Psi^{-\infty}(S), \text { rapid decay, } K \times K \text { invariant. }\right\}
\end{aligned}
$$

Product:

$$
\left(\Phi_{1} * \Phi_{2}\right)(g)=\int_{G} \Phi_{1}\left(g h^{-1}\right) \circ \Phi_{2}(h) d h
$$

Delocalized traces

- Subalgebras of the Roe algebra $C^{*}(X)^{G}$:

$$
\begin{aligned}
\mathcal{A}_{G}^{c}(X): & =\left(C_{c}^{\infty}(G) \hat{\otimes} \Psi^{-\infty}(S)\right)^{K \times K} \\
& \cong\left\{\Phi: G \rightarrow \Psi^{-\infty}(S), \text { compact support, } K \times K\right. \text { invariant }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{G}^{\infty}(X): & =\left(\mathcal{L}_{t}(G) \hat{\otimes} \Psi^{-\infty}(S)\right)^{K \times K} \\
& \cong\left\{\Phi: G \rightarrow \Psi^{-\infty}(S), \text { rapid decay, } K \times K \text { invariant. }\right\}
\end{aligned}
$$

Product:

$$
\left(\Phi_{1} * \Phi_{2}\right)(g)=\int_{G} \Phi_{1}\left(g h^{-1}\right) \circ \Phi_{2}(h) d h
$$

- delocalized trace $\tau_{g}^{X}: \mathcal{A}_{G}^{\infty}(X) \rightarrow \mathbb{C}$ given by:

$$
\tau_{g}^{X}(\Phi):=\tau_{g}\left(\operatorname{Tr}_{S}(\Phi)\right)
$$

Delocalized η-invariants

X is of bounded geometry and $\mathcal{A}_{G}^{\infty}(X) \subset C^{*}(X)^{G}$ is closed under holomorphic functional calculus:

$$
e^{-t D^{2}}=\frac{1}{2 \pi i} \int_{C} \frac{e^{-t \lambda}}{\lambda-D^{2}} d \lambda \in \mathcal{A}_{G}^{\infty}(X)
$$

Follows from analysis of the resolvent

$$
\lambda-D^{2}=B_{\lambda}+C_{\lambda}, \quad B_{\lambda} \in \Psi_{c}^{-2}(X), C_{\lambda} \in \mathcal{A}_{G}^{\infty}(M),
$$

with $C_{\lambda} \rightarrow 0$ as $\operatorname{Re}(\lambda) \rightarrow \infty$.

Delocalized η-invariants

X is of bounded geometry and $\mathcal{A}_{G}^{\infty}(X) \subset C^{*}(X)^{G}$ is closed under holomorphic functional calculus:

$$
e^{-t D^{2}}=\frac{1}{2 \pi i} \int_{C} \frac{e^{-t \lambda}}{\lambda-D^{2}} d \lambda \in \mathcal{A}_{G}^{\infty}(X)
$$

Follows from analysis of the resolvent

$$
\lambda-D^{2}=B_{\lambda}+C_{\lambda}, \quad B_{\lambda} \in \Psi_{c}^{-2}(X), C_{\lambda} \in \mathcal{A}_{G}^{\infty}(M),
$$

with $C_{\lambda} \rightarrow 0$ as $\operatorname{Re}(\lambda) \rightarrow \infty$.
Theorem (Piazza-P.-Song-Tang)
The following integral converges:

$$
\eta_{g}(D):=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \tau_{g}^{X}\left(D e^{-t D^{2}}\right) \frac{d t}{\sqrt{t}}
$$

Delocalized η-invariants

X is of bounded geometry and $\mathcal{A}_{G}^{\infty}(X) \subset C^{*}(X)^{G}$ is closed under holomorphic functional calculus:

$$
e^{-t D^{2}}=\frac{1}{2 \pi i} \int_{C} \frac{e^{-t \lambda}}{\lambda-D^{2}} d \lambda \in \mathcal{A}_{G}^{\infty}(X)
$$

Follows from analysis of the resolvent

$$
\lambda-D^{2}=B_{\lambda}+C_{\lambda}, \quad B_{\lambda} \in \Psi_{c}^{-2}(X), C_{\lambda} \in \mathcal{A}_{G}^{\infty}(M),
$$

with $C_{\lambda} \rightarrow 0$ as $\operatorname{Re}(\lambda) \rightarrow \infty$.
Theorem (Piazza-P.-Song-Tang)
The following integral converges:

$$
\eta_{g}(D):=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \tau_{g}^{X}\left(D e^{-t D^{2}}\right) \frac{d t}{\sqrt{t}}
$$

N.B: No invertibility or gap assumptions!

About the proof

Large time behaviour: Recall $D^{2}=D_{G, K}^{2}+D_{S}^{2}$ and decompose

$$
L^{2}(X)=\bigoplus_{\lambda_{i} \in \sigma\left(D_{S}\right)}\left[L^{2}(G) \otimes \mathfrak{p} \otimes L^{2}(S)_{\lambda_{i}}\right]^{K}
$$

Moscovici-Stanton give estimates
$\left|\tau_{g}^{G / K}\left(D_{G, K} e^{-D_{G, K}^{2}}\right)\right| \leq C_{1} e^{-C_{2} / t} t^{-3 / 2}$ resulting in convergence of

$$
\frac{1}{\sqrt{\pi}} \int_{1}^{\infty} \tau_{g}^{X}\left(D e^{-t D^{2}}\right) \frac{d t}{\sqrt{t}} .
$$

About the proof

Short time behaviour: rewrite (Hochs-Wang)

$$
\tau_{g}^{X}\left(D e^{-t D^{2}}\right)=\int_{X} \int_{G} c_{G}(g) c_{X}(g x) \operatorname{tr}\left(k_{t}(x, g x)\right) d g d x
$$

with $k_{t}(x, y)$ kernel of $D e^{-t D^{2}}$, and c^{X} cut-off function on X.

About the proof

Short time behaviour: rewrite (Hochs-Wang)

$$
\tau_{g}^{X}\left(D e^{-t D^{2}}\right)=\int_{X} \int_{G} c_{G}(g) c_{X}(g x) \operatorname{tr}\left(k_{t}(x, g x)\right) d g d x
$$

with $k_{t}(x, y)$ kernel of $D e^{-t D^{2}}$, and c^{X} cut-off function on X.
Let $W \subset X$ open subset containing X^{g}.

- Gaussian estimates for the heat kernel gives exponential decay of

$$
\int_{X \backslash W} \int_{G} c_{G}(g) c_{X}(g x) \operatorname{tr}\left(k_{t}(x, g x)\right) d g d x, \quad \text { as } t \downarrow 0
$$

About the proof

Short time behaviour: rewrite (Hochs-Wang)

$$
\tau_{g}^{X}\left(D e^{-t D^{2}}\right)=\int_{X} \int_{G} c_{G}(g) c_{X}(g x) \operatorname{tr}\left(k_{t}(x, g x)\right) d g d x
$$

with $k_{t}(x, y)$ kernel of $D e^{-t D^{2}}$, and c^{X} cut-off function on X.
Let $W \subset X$ open subset containing X^{g}.

- Gaussian estimates for the heat kernel gives exponential decay of

$$
\int_{X \backslash W} \int_{G} c_{G}(g) c_{X}(g x) \operatorname{tr}\left(k_{t}(x, g x)\right) d g d x, \quad \text { as } t \downarrow 0
$$

- An argument of Zhang shows that

$$
\frac{1}{\sqrt{t}} \int_{W} \int_{G} c_{G}(g) c_{X}(g x) \operatorname{tr}\left(k_{t}(x, g x)\right) d g d x=O(1) \quad t \downarrow 0
$$

Manifolds with boundary

- Y_{0} manifold with boundary, proper cocompact action of G, \mathbf{h} slice compatible metric,

Manifolds with boundary

- Y_{0} manifold with boundary, proper cocompact action of G, \mathbf{h} slice compatible metric,
- $\hat{Y}:=Y_{0} \cup_{\partial Y_{0}}\left((-\infty, 0) \times \partial Y_{0}\right)$ manifold with cylindrical ends, with extended metric $\hat{\mathbf{h}}$,

Manifolds with boundary

- Y_{0} manifold with boundary, proper cocompact action of G, \mathbf{h} slice compatible metric,
- $\hat{Y}:=Y_{0} \cup_{\partial Y_{0}}\left((-\infty, 0) \times \partial Y_{0}\right)$ manifold with cylindrical ends, with extended metric $\hat{\mathbf{h}}$,
- Y b-manifold associated to \hat{Y}, metric $\hat{\mathbf{h}}=\frac{d x^{2}}{x^{2}}+\mathbf{h}$ near ∂Y.

Manifolds with boundary

- Y_{0} manifold with boundary, proper cocompact action of G, \mathbf{h} slice compatible metric,
- $\hat{Y}:=Y_{0} \cup_{\partial Y_{0}}\left((-\infty, 0) \times \partial Y_{0}\right)$ manifold with cylindrical ends, with extended metric $\hat{\mathbf{h}}$,
- Y b-manifold associated to \hat{Y}, metric $\hat{\mathbf{h}}=\frac{d x^{2}}{x^{2}}+\mathbf{h}$ near ∂Y.

Using b-calculus with ϵ-bounds on the slice $S \subset Y$:

$$
0 \longrightarrow \mathcal{A}_{G}^{c}(Y) \longrightarrow{ }^{b} \mathcal{A}_{G}^{c}(Y) \xrightarrow{I}{ }^{b} \mathcal{A}_{G, \mathbb{R}}^{c}(\operatorname{cyl}(\partial Y)) \longrightarrow 0
$$

Manifolds with boundary

- Y_{0} manifold with boundary, proper cocompact action of G, \mathbf{h} slice compatible metric,
- $\hat{Y}:=Y_{0} \cup_{\partial Y_{0}}\left((-\infty, 0) \times \partial Y_{0}\right)$ manifold with cylindrical ends, with extended metric $\hat{\mathbf{h}}$,
- Y b-manifold associated to \hat{Y}, metric $\hat{\mathbf{h}}=\frac{d x^{2}}{x^{2}}+\mathbf{h}$ near ∂Y.

Using b-calculus with ϵ-bounds on the slice $S \subset Y$:

$$
0 \longrightarrow \mathcal{A}_{G}^{c}(Y) \longrightarrow{ }^{b} \mathcal{A}_{G}^{c}(Y) \xrightarrow{I}{ }^{b} \mathcal{A}_{G, \mathbb{R}}^{c}(\operatorname{cyl}(\partial Y)) \longrightarrow 0
$$

Using Lafforgue's algebra:

$$
0 \longrightarrow \mathcal{A}_{G}^{\infty}(Y) \longrightarrow{ }^{b} \mathcal{A}_{G}^{\infty}(Y) \xrightarrow{I}{ }^{b} \mathcal{A}_{G, \mathbb{R}}^{\infty}(\operatorname{cyl}(\partial Y)) \longrightarrow 0
$$

Index classes

Invariant Dirac operator D

- of product type near ∂Y

Index classes

Invariant Dirac operator D

- of product type near ∂Y
- $D_{\partial Y}$ is L^{2}-invertible.

Index classes

Invariant Dirac operator D

- of product type near ∂Y
- $D_{\partial Y}$ is L^{2}-invertible.

Choose:

- Q^{σ} be a symbolic b-parametrix for $D: D^{+} Q^{\sigma}=1-R_{\sigma}^{-}$
- $Q^{b}=Q^{\sigma}-Q^{\prime}$ with $Q^{\prime}=s\left(\left(I\left(D^{+}\right)^{-1} I\left(R_{\sigma}^{-}\right)\right)\right.$

Index classes

Invariant Dirac operator D

- of product type near ∂Y
- $D_{\partial Y}$ is L^{2}-invertible.

Choose:

- Q^{σ} be a symbolic b-parametrix for $D: D^{+} Q^{\sigma}=1-R_{\sigma}^{-}$
- $Q^{b}=Q^{\sigma}-Q^{\prime}$ with $Q^{\prime}=s\left(\left(I\left(D^{+}\right)^{-1} I\left(R_{\sigma}^{-}\right)\right)\right.$

Connes-Skandalis projector

$$
\left(D^{+} Q^{b}=1-{ }^{b} S_{-}, Q^{b} D^{-1}=1-{ }^{b} S_{+}\right)
$$

$$
P_{Q}^{b}:=\left(\begin{array}{cc}
{ }^{b} S_{+}^{2} & { }^{b} S_{+}\left(I+{ }^{b} S_{+}\right) Q^{b} \\
{ }^{b} S_{-} D^{+} & I-{ }^{b} S_{-}^{2}
\end{array}\right)
$$

Index classes

Invariant Dirac operator D

- of product type near ∂Y
- $D_{\partial Y}$ is L^{2}-invertible.

Choose:

- Q^{σ} be a symbolic b-parametrix for $D: D^{+} Q^{\sigma}=1-R_{\sigma}^{-}$
- $Q^{b}=Q^{\sigma}-Q^{\prime}$ with $Q^{\prime}=s\left(\left(I\left(D^{+}\right)^{-1} I\left(R_{\sigma}^{-}\right)\right)\right.$

Connes-Skandalis projector

$$
\left(D^{+} Q^{b}=1-{ }^{b} S_{-}, Q^{b} D^{-1}=1-{ }^{b} S_{+}\right)
$$

$$
P_{Q}^{b}:=\left(\begin{array}{cc}
{ }^{b} S_{+}^{2} & { }^{b} S_{+}\left(I+{ }^{b} S_{+}\right) Q^{b} \\
{ }^{b} S_{-} D^{+} & I-{ }^{b} S_{-}^{2}
\end{array}\right)
$$

gives an index class

$$
\operatorname{lnd}_{\infty}(D):=\left[P_{Q}^{b}\right]-\left[e_{1}\right] \in K_{0}\left(\mathcal{A}_{G}^{\infty}(Y)\right)=K_{0}\left(C^{*}\left(Y_{0} \subset Y\right)^{G}\right)
$$

Relative index class

Short exact sequence

$$
0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} B \longrightarrow 0 .
$$

Relative index class

Short exact sequence

$$
0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} B \longrightarrow 0 .
$$

- $\left[\left(P, Q, p_{t}\right)\right] \in K_{0}(A, B)$ with $P, Q \in M_{n}(A)$ idempotents and $\pi(P) \stackrel{p_{t}}{\sim} \pi(Q)$.

Relative index class

Short exact sequence

$$
0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} B \longrightarrow 0 .
$$

- $\left[\left(P, Q, p_{t}\right)\right] \in K_{0}(A, B)$ with $P, Q \in M_{n}(A)$ idempotents and $\pi(P) \stackrel{p_{t}}{\sim} \pi(Q)$.
- excision isomorphism $\alpha_{\mathrm{ex}}: K_{0}(J) \longrightarrow K_{0}(A, B)$ given by $\alpha_{\mathrm{ex}}([(P, Q)])=[(P, Q, \mathbf{c})]$ with \mathbf{c} denoting the constant path.

Relative index class

Short exact sequence

$$
0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} B \longrightarrow 0 .
$$

- $\left[\left(P, Q, p_{t}\right)\right] \in K_{0}(A, B)$ with $P, Q \in M_{n}(A)$ idempotents and $\pi(P) \stackrel{p_{t}}{\sim} \pi(Q)$.
- excision isomorphism $\alpha_{\mathrm{ex}}: K_{0}(J) \longrightarrow K_{0}(A, B)$ given by $\alpha_{\mathrm{ex}}([(P, Q)])=[(P, Q, \mathbf{c})]$ with \mathbf{c} denoting the constant path.
Connes-Moscovici projector:

$$
\left.V(D):=\left(\begin{array}{cc}
e^{-D^{-} D^{+}} & e^{-\frac{1}{2} D^{-} D^{+}}\left(\frac{1-e^{-D^{-} D^{+}}}{D^{-} D^{+}}\right.
\end{array}\right) D^{-}\right)
$$

Relative index class

Short exact sequence

$$
0 \longrightarrow J \longrightarrow A \xrightarrow{\pi} B \longrightarrow 0 .
$$

- $\left[\left(P, Q, p_{t}\right)\right] \in K_{0}(A, B)$ with $P, Q \in M_{n}(A)$ idempotents and $\pi(P) \stackrel{p_{t}}{\sim} \pi(Q)$.
- excision isomorphism $\alpha_{\mathrm{ex}}: K_{0}(J) \longrightarrow K_{0}(A, B)$ given by $\alpha_{\mathrm{ex}}([(P, Q)])=[(P, Q, \mathbf{c})]$ with \mathbf{c} denoting the constant path.
Connes-Moscovici projector:

$$
\left.V(D):=\left(\begin{array}{cc}
e^{-D^{-} D^{+}} & e^{-\frac{1}{2} D^{-} D^{+}}\left(\frac{l-e^{-D^{-} D^{+}}}{D^{-} D^{+}}\right.
\end{array}\right) D^{-}\right) \in M_{2}\left({ }^{b} \mathcal{A}_{G}^{\infty}(Y)\right)
$$

Relative index class
$\operatorname{Ind}_{\infty}\left(D, D_{\partial}\right) \in K_{0}\left({ }^{b} \mathcal{A}_{G}^{\infty}\left(Y_{0}\right),{ }^{b} \mathcal{A}_{G, \mathbb{R}}^{\infty}(\operatorname{cyl}(\partial Y))\right):$
$\left(V(D), e_{1}, q_{t}\right), \quad t \in[1,+\infty], \quad$ with $q_{t}:= \begin{cases}V\left(t D_{\mathrm{cyl}}\right) & \text { if } t \in[1,+\infty) \\ e_{1} & \text { if } t=\infty\end{cases}$

Relative cyclic cocycles

- Recall the delocalized trace:

$$
\tau_{g}^{Y}: \mathcal{A}_{G}^{\infty}(Y) \rightarrow \mathbb{C}, \quad \tau_{g}^{Y}(\Phi):=\tau_{g}\left(\operatorname{Tr}_{s}(\Phi)\right) .
$$

Relative cyclic cocycles

- Recall the delocalized trace:

$$
\tau_{g}^{Y}: \mathcal{A}_{G}^{\infty}(Y) \rightarrow \mathbb{C}, \quad \tau_{g}^{Y}(\Phi):=\tau_{g}\left(\operatorname{Tr}_{S}(\Phi)\right)
$$

- Using the b-trace $\operatorname{Tr}_{S}^{b}(k):=\int_{S}^{b} k(x, x) d x$,

$$
\tau_{g}^{Y, r}:{ }^{b} \mathcal{A}_{G}^{\infty}(Y) \rightarrow \mathbb{C}, \quad \tau_{g}^{Y, r}(\Phi):=\tau_{g}\left(\operatorname{Tr}_{S}^{b}(\Phi)\right)
$$

Relative cyclic cocycles

- Recall the delocalized trace:

$$
\tau_{g}^{Y}: \mathcal{A}_{G}^{\infty}(Y) \rightarrow \mathbb{C}, \quad \tau_{g}^{Y}(\Phi):=\tau_{g}\left(\operatorname{Tr}_{S}(\Phi)\right)
$$

- Using the b-trace $\operatorname{Tr}_{S}^{b}(k):=\int_{S}^{b} k(x, x) d x$,

$$
\tau_{g}^{Y, r}:{ }^{b} \mathcal{A}_{G}^{\infty}(Y) \rightarrow \mathbb{C}, \quad \tau_{g}^{Y, r}(\Phi):=\tau_{g}\left(\operatorname{Tr}_{S}^{b}(\Phi)\right)
$$

- 1-cocycle on ${ }^{b} \mathcal{A}_{G, \mathbb{R}}^{\infty}(\operatorname{cyl}(\partial Y))$:

$$
\sigma_{g}^{\partial Y}\left(A_{0}, A_{1}\right):=\frac{i}{2 \pi} \int_{\mathbb{R}} \tau_{g}^{\partial Y}\left(\partial_{\lambda} I\left(A_{0}, \lambda\right) \circ I\left(A_{1}, \lambda\right) d \lambda,\right.
$$

where the indicial family of $A \in{ }^{b} \mathcal{A}_{G, \mathbb{R}}^{\infty}(\operatorname{cyl}(\partial Y))$, denoted $I(A, \lambda)$, appears.

Index pairings

- Recall Melrose formula for the b-trace:

$$
{ }^{b} \operatorname{Tr}_{S}\left(\left[A_{0}, A_{1}\right]\right)=\frac{i}{2 \pi} \int_{\mathbb{R}} \operatorname{Tr}_{\partial S}\left(\partial_{\lambda}\left(A_{0}, \lambda\right) \circ I\left(A_{1}, \lambda\right)\right) d \lambda
$$

Index pairings

- Recall Melrose formula for the b-trace:

$$
{ }^{b} \operatorname{Tr}_{S}\left(\left[A_{0}, A_{1}\right]\right)=\frac{i}{2 \pi} \int_{\mathbb{R}} \operatorname{Tr}_{\partial S}\left(\partial_{\lambda}\left(A_{0}, \lambda\right) \circ I\left(A_{1}, \lambda\right)\right) d \lambda
$$

- This implies

$$
\left(\begin{array}{cc}
(b+B) & -l^{*} \\
0 & -(b+B)
\end{array}\right)\binom{\tau_{g}^{Y, r}}{\sigma_{g}^{\partial Y}}=0
$$

Index pairings

- Recall Melrose formula for the b-trace:

$$
{ }^{b} \operatorname{Tr}_{S}\left(\left[A_{0}, A_{1}\right]\right)=\frac{i}{2 \pi} \int_{\mathbb{R}} \operatorname{Tr}_{\partial S}\left(\partial_{\lambda}\left(A_{0}, \lambda\right) \circ I\left(A_{1}, \lambda\right)\right) d \lambda
$$

- This implies

$$
\left(\begin{array}{cc}
(b+B) & -l^{*} \\
0 & -(b+B)
\end{array}\right)\binom{\tau_{g}^{Y, r}}{\sigma_{g}^{\partial Y}}=0
$$

- and leads to

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\left\langle\left(\tau_{g}^{Y, r}, \sigma_{g}\right), \operatorname{Ind}_{\infty}\left(D, D_{\partial}\right)\right\rangle
$$

The delocalized APS Theorem

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right)
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

The delocalized APS Theorem

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right)
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

The delocalized APS Theorem

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right)
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

- Previous work of Hochs-Wang-Wang assumes G / Z_{g} compact.

The delocalized APS Theorem

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right)
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

- Previous work of Hochs-Wang-Wang assumes G / Z_{g} compact.
- Closed manifold case is due to Hochs-Wang.

Proof

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} A S_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right)
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

Proof

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right)
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

Proof in 2 steps:

$$
\left\langle\left(\tau_{g}^{Y, r}, \sigma_{g}\right), \operatorname{lnd}_{\infty}\left(D, D_{\partial}\right)\right\rangle=\tau_{g, s}^{Y, r}\left(e^{D^{2}}\right)+\int_{1}^{\infty} \sigma_{g}^{\partial Y}\left(\left[\dot{q}_{t}, q_{t}\right], q_{t}\right) d t
$$

Proof

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} A S_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right),
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

Proof in 2 steps:

$$
\left\langle\left(\tau_{g}^{Y, r}, \sigma_{g}\right), \operatorname{lnd}_{\infty}\left(D, D_{\partial}\right)\right\rangle=\tau_{g, s}^{Y, r}\left(e^{D^{2}}\right)+\int_{1}^{\infty} \sigma_{g}^{\partial Y}\left(\left[\dot{q}_{t}, q_{t}\right], q_{t}\right) d t
$$

- Pairing on the bulk with $\tau_{g}^{Y, r}$ in the spirit of Melrose's proof of the APS index theorem using Getzler rescaling.

Proof

Theorem (Piazza-P.-Song-Tang)

Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\tau_{g}^{Y}, \operatorname{lnd}_{\infty}(D)\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial Y}\right)
$$

where

$$
A S_{g}\left(D_{0}\right)=\frac{\hat{A}\left(Y_{0}^{g}\right) \operatorname{tr}\left(g e^{R^{L}}\right)}{\operatorname{det}^{1 / 2}\left(1-g e^{-R^{N}}\right)}
$$

Proof in 2 steps:

$$
\left\langle\left(\tau_{g}^{Y, r}, \sigma_{g}\right), \operatorname{lnd}_{\infty}\left(D, D_{\partial}\right)\right\rangle=\tau_{g, s}^{Y, r}\left(e^{D^{2}}\right)+\int_{1}^{\infty} \sigma_{g}^{\partial Y}\left(\left[\dot{q}_{t}, q_{t}\right], q_{t}\right) d t
$$

- Pairing on the bulk with $\tau_{g}^{Y, r}$ in the spirit of Melrose's proof of the APS index theorem using Getzler rescaling.
- Pairing on the boundary with $\sigma_{g}^{\partial Y}$ produces a long complicated expression that we show that this equals $\eta_{g}(D)$.

Three types of perturbations

For the signature operator D_{∂} is not invertible.
What if D_{∂} is not L^{2}-invertible?

$$
D=D_{G, K} \otimes 1+\gamma \otimes D_{S}, \quad \gamma:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Three types of perturbations

For the signature operator D_{∂} is not invertible.
What if D_{∂} is not L^{2}-invertible?

$$
D=D_{G, K} \otimes 1+\gamma \otimes D_{S}, \quad \gamma:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- global perturbation on the slice: $D_{\vartheta}=D+\gamma \vartheta, \vartheta>0$,

Three types of perturbations

For the signature operator D_{∂} is not invertible.
What if D_{∂} is not L^{2}-invertible?

$$
D=D_{G, K} \otimes 1+\gamma \otimes D_{S}, \quad \gamma:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- global perturbation on the slice: $D_{\vartheta}=D+\gamma \vartheta, \vartheta>0$,
- global perturbation $D_{\Theta}:=D+\Theta, \Theta>0$, not in the L^{2}-spectrum of D,

Three types of perturbations

For the signature operator D_{∂} is not invertible.
What if D_{∂} is not L^{2}-invertible?

$$
D=D_{G, K} \otimes 1+\gamma \otimes D_{S}, \quad \gamma:=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- global perturbation on the slice: $D_{\vartheta}=D+\gamma \vartheta, \vartheta>0$,
- global perturbation $D_{\Theta}:=D+\Theta, \Theta>0$, not in the L^{2}-spectrum of D,
- general perturbation $D+C$ with $C \in \mathcal{A}_{G}^{c}(X)$. (always exists!)

Global perturbation on the slice

- Recall $D=D_{G, K} \otimes 1+\gamma \otimes D_{S}$. The Connes-Kasparov correspondence gives
$D L^{2}$ - invertible $\Longleftrightarrow D_{S} L^{2}$ - invertible
(Consider Dirac induction of $\operatorname{ker}\left(D_{S}\right)$)

Global perturbation on the slice

- Recall $D=D_{G, K} \otimes 1+\gamma \otimes D_{S}$. The Connes-Kasparov correspondence gives

$$
D L^{2}-\text { invertible } \Longleftrightarrow D_{S} L^{2}-\text { invertible }
$$

(Consider Dirac induction of $\operatorname{ker}\left(D_{S}\right)$)

- $D=D+\gamma \vartheta, \vartheta>0$, smaller than the lowest eigenvalue of D_{S}.

$$
\eta_{g}\left(D_{\vartheta}\right):=\operatorname{LIM}_{s \downarrow 0} \frac{1}{\sqrt{\pi}} \int_{s}^{\infty} \tau_{g}^{X}\left(D_{\vartheta} e^{-t D_{\vartheta}^{2}}\right) \frac{d t}{\sqrt{t}}
$$

Global perturbation on the slice

- Recall $D=D_{G, K} \otimes 1+\gamma \otimes D_{S}$. The Connes-Kasparov correspondence gives

$$
D L^{2}-\text { invertible } \Longleftrightarrow D_{S} L^{2}-\text { invertible }
$$

(Consider Dirac induction of $\operatorname{ker}\left(D_{S}\right)$)

- $D=D+\gamma \vartheta, \vartheta>0$, smaller than the lowest eigenvalue of D_{S}.

$$
\eta_{g}\left(D_{\vartheta}\right):=\operatorname{LIM}_{s \downarrow 0} \frac{1}{\sqrt{\pi}} \int_{s}^{\infty} \tau_{g}^{X}\left(D_{\vartheta} e^{-t D_{\vartheta}^{2}}\right) \frac{d t}{\sqrt{t}}
$$

- APS-type index theorem, by letting $\vartheta \downarrow 0$:

Theorem (Piazza-P.-Song-Tang)
Assume G is of equal rank, i.e., has discrete series. Then

$$
\left\langle\operatorname{Ind}_{\infty}\left(D_{\vartheta}\right), \tau_{g}^{Y}\right\rangle=\int_{Y_{0}^{g}} c^{g} \operatorname{AS}_{g}\left(D_{0}\right)-\frac{1}{2}\left(\eta_{g}\left(D_{\partial Y}\right)+\left\langle\operatorname{Ind}_{D}\left(\operatorname{ker}\left(D_{S}\right)\right), \tau_{g}\right\rangle\right)
$$

Global perturbation

- Assume D is not invertible, but has a spectral gap. Global perturbation

$$
D_{\Theta}:=D+\Theta, \quad \Theta>0, \text { smaller that the gap. }
$$

Global perturbation

- Assume D is not invertible, but has a spectral gap. Global perturbation

$$
D_{\Theta}:=D+\Theta, \quad \Theta>0, \text { smaller that the gap. }
$$

- Perturbed delocalized η-invariant:

$$
\eta_{g}\left(D_{\Theta}\right):=\operatorname{LIM}_{s \downarrow 0} \frac{1}{\sqrt{\pi}} \int_{s}^{\infty} \tau_{g}^{X}\left(D_{\Theta} e^{-t D_{\Theta}^{2}}\right) \frac{d t}{\sqrt{t}}
$$

Global perturbation

- Assume D is not invertible, but has a spectral gap. Global perturbation

$$
D_{\Theta}:=D+\Theta, \quad \Theta>0, \text { smaller that the gap. }
$$

- Perturbed delocalized η-invariant:

$$
\eta_{g}\left(D_{\Theta}\right):=\operatorname{LIM}_{s \downarrow 0} \frac{1}{\sqrt{\pi}} \int_{s}^{\infty} \tau_{g}^{X}\left(D_{\Theta} e^{-t D_{\Theta}^{2}}\right) \frac{d t}{\sqrt{t}}
$$

- APS-type index theorem, by letting $\Theta \downarrow 0$:

Theorem (Piazza-P.-Song-Tang)
Assume that D has a spectral gap.

$$
\left\langle\operatorname{Ind}_{\infty}\left(D_{\vartheta}\right), \tau_{g}^{Y}\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2}\left(\eta_{g}\left(D_{\partial Y}\right)+\left\langle\Pi_{\operatorname{ker}\left(D_{\partial}\right)}, \tau_{g}\right\rangle\right)
$$

General perturbations

- Previous cases work under a gap assumption. We now consider

$$
D+C, \quad C \in \mathcal{A}_{G}^{c}(X), D+C \text { is } L^{2} \text { - invertible. }
$$

General perturbations

- Previous cases work under a gap assumption. We now consider

$$
D+C, \quad C \in \mathcal{A}_{G}^{c}(X), D+C \text { is } L^{2} \text { - invertible. }
$$

- Perturbed heat kernel: write $(D+C)^{2}=D^{2}+A, A \in \mathcal{A}_{G}^{c}(X)$ and expand in a Volterra series.

General perturbations

- Previous cases work under a gap assumption. We now consider

$$
D+C, \quad C \in \mathcal{A}_{G}^{c}(X), D+C \text { is } L^{2} \text { - invertible. }
$$

- Perturbed heat kernel: write $(D+C)^{2}=D^{2}+A, A \in \mathcal{A}_{G}^{c}(X)$ and expand in a Volterra series.
- Perturbed delocalized η-invariant:

$$
\eta_{g}(D+C):=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \tau_{g}^{X}\left((D+C) e^{-t(D+C)^{2}}\right) \frac{d t}{\sqrt{t}}
$$

General perturbations

- Previous cases work under a gap assumption. We now consider

$$
D+C, \quad C \in \mathcal{A}_{G}^{c}(X), D+C \text { is } L^{2} \text { - invertible. }
$$

- Perturbed heat kernel: write $(D+C)^{2}=D^{2}+A, A \in \mathcal{A}_{G}^{c}(X)$ and expand in a Volterra series.
- Perturbed delocalized η-invariant:

$$
\eta_{g}(D+C):=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \tau_{g}^{X}\left((D+C) e^{-t(D+C)^{2}}\right) \frac{d t}{\sqrt{t}}
$$

- APS-type index theorem:

Theorem (Piazza-P.-Song-Tang)
Assume that $D_{\partial}+B_{\partial}^{\infty}$ is L^{2}-invertible.

$$
\left\langle\operatorname{Ind}_{\infty}\left(D, D_{\partial}+B_{\partial}^{\infty}\right),\left(\tau_{g}^{Y, r}, \sigma_{g}^{\partial Y}\right)\right\rangle=\int_{Y_{0}^{g}} c^{g} \mathrm{AS}_{g}\left(D_{0}\right)-\frac{1}{2} \eta_{g}\left(D_{\partial}+B_{\partial}^{\infty}\right)
$$

Higher versions

- Song-Tang: For any cuspidal parabolic subgroup $P=M A N \subset G$ and $g \in G$ semisimple there exists a cyclic cocycle Φ_{g}^{P} of degree $\operatorname{dim}(A)$ on $\mathcal{L}_{t}(G)$.

Higher versions

- Song-Tang: For any cuspidal parabolic subgroup $P=M A N \subset G$ and $g \in G$ semisimple there exists a cyclic cocycle Φ_{g}^{P} of degree $\operatorname{dim}(A)$ on $\mathcal{L}_{t}(G)$.
$-\Rightarrow$ cyclic cocycle $\Phi_{Y, g}^{P}$ on $\mathcal{A}_{G}^{\infty}(Y)$.

Higher versions

- Song-Tang: For any cuspidal parabolic subgroup $P=M A N \subset G$ and $g \in G$ semisimple there exists a cyclic cocycle Φ_{g}^{P} of degree $\operatorname{dim}(A)$ on $\mathcal{L}_{t}(G)$.
- \Rightarrow cyclic cocycle $\Phi_{Y, g}^{P}$ on $\mathcal{A}_{G}^{\infty}(Y)$.
- Higher APS index theorem:

Theorem (Piazza-P.-Song-Tang)
Assume that D_{∂} is L^{2}-invertible.

$$
\left\langle\Phi_{Y, g}^{P}, \operatorname{Ind}_{\infty}(D)\right\rangle=\int_{\left(Y_{0} / A N\right)^{g}} c_{Y_{0} / A N}^{g} A S\left(Y_{0} / A N\right)_{g}-\frac{1}{2} \eta_{g}\left(D_{\partial Y_{M}}\right)
$$

where $Y_{M}:=M \times_{K \cap M} S$ is the slice decomposition of $Y / A M$ with its M-action.

ρ-numbers

- If $g \in G$ is not elliptic, any element of its conjugacy class C_{g} will act fixed point free on any proper G-manifold W :

$$
\int_{W g} c^{g} A S_{g}(W)=0
$$

ρ-numbers

- If $g \in G$ is not elliptic, any element of its conjugacy class C_{g} will act fixed point free on any proper G-manifold W :

$$
\int_{W g} c^{g} A S_{g}(W)=0
$$

- \mathbf{h} slice compatible metric of positive scalar curvature: $D_{\mathbf{h}}$ is L^{2}-invertible:

$$
\rho_{g}(\mathbf{h}):=\eta_{g}\left(D_{\mathbf{h}}\right)
$$

APS index theorem implies that this is bordism invariant.

ρ-numbers

- If $g \in G$ is not elliptic, any element of its conjugacy class C_{g} will act fixed point free on any proper G-manifold W :

$$
\int_{W^{g}} c^{g} A S_{g}(W)=0
$$

- \mathbf{h} slice compatible metric of positive scalar curvature: $D_{\mathbf{h}}$ is L^{2}-invertible:

$$
\rho_{g}(\mathbf{h}):=\eta_{g}\left(D_{\mathbf{h}}\right)
$$

APS index theorem implies that this is bordism invariant.

- $\mathbf{f}: X_{1} \rightarrow X_{2} G$-homotopy invariant. Fukumoto: there exists a perturbation B_{f} making the signature operator on $X:=X_{1} \sqcup\left(-X_{2}\right)$:

$$
\rho_{g}(\mathbf{f}):=\eta_{g}\left(D_{X}^{\text {sign }}+B_{\mathbf{f}}\right)
$$

Bordism invariant by the APS index theorem.

Literature

- P. Piazza and H.P.: Higher genera for proper actions of Lie groups AKT (2019) arXiv: 1801.06676
- P. Piazza and H.P.: Higher genera for proper actions of Lie groups part II: the case of manifolds with boundary AKT (2021) arXiv:2010.02783
- P. Piazza, H.P., Y. Song and X. Tang. Higher orbital integrals, rho numbers and index theory arXiv: 2108.00982
- P. Piazza, H.P., Y. Song and X. Tang. Perturbed Dirac operators and index theory on G-proper manifolds. to appear.

