# Delocalized invariants for proper actions of Lie groups

Based on joint work with P. Piazza, Y. Song and X. Tang

H. Posthuma

University of Amsterdam

March 10, 2023



## Motivation: Numerical invariants from index classes

 $\Gamma \times M \to M$  free proper cocompact action of a discrete group  $\Gamma.$ 

## Motivation: Numerical invariants from index classes

- $\Gamma \times M \to M$  free proper cocompact action of a discrete group  $\Gamma$ .
  - ▶ **Primary invariants**: higher index theory (Connes–Moscovici)

$$H^{\bullet}(\Gamma) \to HC^{\bullet}(\mathbb{C}[\Gamma]), \quad \varphi \mapsto \tau_{\varphi}$$

D invariant Dirac operator  $\Longrightarrow \operatorname{Ind}(D) \in \mathcal{K}_0(\mathcal{C}_r^*(\Gamma))$ If  $\tau_{\varphi}$  extends to a subalgebra  $\mathbb{C}[\Gamma] \subset \mathcal{A} \subset \mathcal{C}_r^*(\Gamma)$  we can pair:

$$\langle \operatorname{Ind}(D), \tau_{\varphi} \rangle = \int_{M/\Gamma} AS(D) \wedge \nu^* \varphi.$$

⇒ higher signatures.

## Motivation: Numerical invariants from index classes

 $\Gamma \times M \to M$  free proper cocompact action of a discrete group  $\Gamma$ .

▶ **Primary invariants**: higher index theory (Connes–Moscovici)

$$H^{\bullet}(\Gamma) \to HC^{\bullet}(\mathbb{C}[\Gamma]), \quad \varphi \mapsto \tau_{\varphi}$$

D invariant Dirac operator  $\Longrightarrow \operatorname{Ind}(D) \in \mathcal{K}_0(\mathcal{C}^*_r(\Gamma))$ If  $\tau_{\varphi}$  extends to a subalgebra  $\mathbb{C}[\Gamma] \subset \mathcal{A} \subset \mathcal{C}^*_r(\Gamma)$  we can pair:

$$\langle \operatorname{Ind}(D), \tau_{\varphi} \rangle = \int_{M/\Gamma} AS(D) \wedge \nu^* \varphi.$$

- ⇒ higher signatures.
- **Secondary invariants**: higher APS index theorem (Leichtnam-Piazza,...). Assume  $D_{\partial}$  is  $L^2$ -invertible:

$$\langle \operatorname{Ind}(D), \tau_{\varphi} \rangle = \int_{M/\Gamma} \mathsf{AS}(D) \wedge \nu^* \varphi - \frac{1}{2} \eta_{\varphi}(D_{\partial}).$$

 $\eta_{\omega}(D_{\partial})$  higher  $\eta$ -invariant.

$$\eta_0(D) := \frac{1}{\sqrt{\pi}} \int_0^\infty \operatorname{Tr}\left(De^{-tD^2}\right) \frac{dt}{\sqrt{t}}$$

 $\Rightarrow$  higher  $\rho$ -invariants.



► Instead of discrete groups consider Lie groups (connected, real reductive)

- Instead of discrete groups consider Lie groups (connected, real reductive)
- ▶ Allow for general proper actions, instead of free actions

- Instead of discrete groups consider Lie groups (connected, real reductive)
- ▶ Allow for general proper actions, instead of free actions
- Consider delocalized cyclic cocycles.

- Instead of discrete groups consider Lie groups (connected, real reductive)
- ▶ Allow for general proper actions, instead of free actions
- Consider delocalized cyclic cocycles.
- ▶ N.B.  $HC^{\bullet}(C_c^{\infty}(G))$  is a module over

$$C^{\infty}_{\operatorname{inv}}(G) := \{ f \in C^{\infty}(G), \ f(hgh^{-1} = f(g)) \}.$$

A cocycle is called *delocalized* if its image in  $HC^{\bullet}(C_c^{\infty}(G))_{m_e}$  is zero, where  $m_e := \{f, f(e) = 0\}$ .

▶ The Plancherel trace is *localized at the identity*:

$$\tau_e(f) := f(e).$$



# Paolo's questions

- riangleright can we define a delocalized eta invariant  $\eta_g(D)$  using the heat kernel?
- ▶ if C is a smoothing perturbation can we define  $\eta_g(D+C)$  ?
- ▶ in particular, can we define the delocalized eta invariant of a PSC metric g and of a G-equivariant homot. equivalence f?
- ▶ is there a delocalized APS index theorem ?
- are there higher versions of these results ?

# Paolo's questions

- riangleright can we define a delocalized eta invariant  $\eta_g(D)$  using the heat kernel?
- ▶ if C is a smoothing perturbation can we define  $\eta_g(D+C)$  ?
- ▶ in particular, can we define the delocalized eta invariant of a PSC metric g and of a G-equivariant homot. equivalence f?
- ▶ is there a delocalized APS index theorem ?
- are there higher versions of these results?

The answer to all these questions is: Yes!

#### Outline

Delocalized  $\eta$ -invariants

APS index theorem

Perturbations

Higher versions

▶ *G* linear real reductive, connected Lie group, *K* maximal compact subgroup. Equal rank: dim(G/K) = even.

- ▶ G linear real reductive, connected Lie group, K maximal compact subgroup. Equal rank:  $\dim(G/K) = \text{even}$ .
- ▶ Lafforgue algebra  $\mathcal{L}_t(G)$  defined by norm

$$u_t(f) := \int_G (1 + \|g\|)^t \Xi^{-1}(g) |f(g)| dg,$$

- ▶  $g \mapsto ||g||$  riemannian distance from eK to gK in G/K.
- lacktriangle  $\Xi(g)$  is Harish-Chandra's  $\Xi$ -function  $\Xi(g) := \int_K \mathsf{a}(\mathsf{k}g)^\rho d\mathsf{k}$

- ▶ G linear real reductive, connected Lie group, K maximal compact subgroup. Equal rank:  $\dim(G/K) = \text{even}$ .
- ▶ Lafforgue algebra  $\mathcal{L}_t(G)$  defined by norm

$$u_t(f) := \int_G (1 + \|g\|)^t \Xi^{-1}(g) |f(g)| dg,$$

- ▶  $g \mapsto ||g||$  riemannian distance from eK to gK in G/K.
- $ightharpoonup \equiv (g)$  is Harish-Chandra's  $\equiv$ -function  $\equiv (g) := \int_K \mathsf{a}(\mathsf{k}g)^\rho d\mathsf{k}$
- Let  $g \in G$  semisimple. Orbital integral

$$\tau_{\mathsf{g}}(f) := \int_{G/Z_{\mathsf{g}}} f(h\mathsf{g}h^{-1}) d(hZ_{\mathsf{g}}),$$

defines a continuous trace on  $\mathcal{L}_t(G)$ , for t big enough.

- ▶ G linear real reductive, connected Lie group, K maximal compact subgroup. Equal rank:  $\dim(G/K) = \text{even}$ .
- ▶ Lafforgue algebra  $\mathcal{L}_t(G)$  defined by norm

$$u_t(f) := \int_G (1 + \|g\|)^t \Xi^{-1}(g) |f(g)| dg,$$

- ▶  $g \mapsto ||g||$  riemannian distance from eK to gK in G/K.
- $ightharpoonup \Xi(g)$  is Harish-Chandra's  $\Xi$ -function  $\Xi(g) := \int_K a(kg)^{\rho} dk$
- ▶ Let  $g \in G$  semisimple. Orbital integral

$$\tau_{g}(f) := \int_{G/Z_g} f(hgh^{-1})d(hZ_g),$$

defines a continuous trace on  $\mathcal{L}_t(G)$ , for t big enough.

N.B. Other versions: Harish–Chandra algebra  $\mathcal{C}(G)$ , rapid decay  $H_{\mathcal{C}}^{\infty}(G)$ .



▶  $G \times X \rightarrow X$  smooth, proper cocompact action.

- ▶  $G \times X \rightarrow X$  smooth, proper cocompact action.
- Abels' theorem: there exists a compact slice  $S \subset X$  with  $G \times_K S \stackrel{\cong}{\longrightarrow} X$ .

- ▶  $G \times X \rightarrow X$  smooth, proper cocompact action.
- Abels' theorem: there exists a compact slice  $S \subset X$  with  $G \times_K S \stackrel{\cong}{\longrightarrow} X$ .
- ▶ Slice compatibility: decompose  $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ .
  - ▶ **metric**: K-invariant metrics on S and  $\mathfrak{p}$  via  $TX \cong G \times_K (TS \oplus \mathfrak{p})$ .
  - **Spin**<sup>c</sup>-structure: K-invariant Spin<sup>c</sup>-structures on S and  $\mathfrak{p}$

- $G \times X \to X$  smooth, proper cocompact action.
- ▶ Abels' theorem: there exists a compact slice  $S \subset X$  with  $G \times_K S \stackrel{\cong}{\longrightarrow} X$ .
- ▶ Slice compatibility: decompose  $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ .
  - ▶ **metric**: K-invariant metrics on S and  $\mathfrak{p}$  via  $TX \cong G \times_K (TS \oplus \mathfrak{p})$ .
  - **Spin**<sup>c</sup>-structure: K-invariant Spin  $^{c}$ -structures on S and  $\mathfrak{p}$
- Dirac operator

$$D = D_{G,K} \hat{\otimes} 1 + 1 \hat{\otimes} D_{S},$$

 $D_{G,K}$  Spin<sup>c</sup>-Dirac operator on  $L^2(G)\otimes S_{\mathfrak{p}}$ .

▶ Subalgebras of the Roe algebra  $C^*(X)^G$ :

$$\begin{split} \mathcal{A}^c_G(X) := & \left( C_c^\infty(G) \hat{\otimes} \Psi^{-\infty}(S) \right)^{K \times K} \\ & \cong \{ \Phi : G \to \Psi^{-\infty}(S), \text{ compact support}, \ K \times K \text{ invariant.} \end{split}$$

▶ Subalgebras of the Roe algebra  $C^*(X)^G$ :

$$\mathcal{A}_{G}^{c}(X) := (C_{c}^{\infty}(G) \hat{\otimes} \Psi^{-\infty}(S))^{K \times K}$$
  

$$\cong \{ \Phi : G \to \Psi^{-\infty}(S), \text{ compact support}, \ K \times K \text{ invariant}. \}$$

$$\mathcal{A}_{G}^{\infty}(X) := (\mathcal{L}_{t}(G) \hat{\otimes} \Psi^{-\infty}(S))^{K \times K}$$
  

$$\cong \{ \Phi : G \to \Psi^{-\infty}(S), \text{ rapid decay}, K \times K \text{ invariant.} \}$$

▶ Subalgebras of the Roe algebra  $C^*(X)^G$ :

$$\mathcal{A}_{G}^{c}(X) := (C_{c}^{\infty}(G) \hat{\otimes} \Psi^{-\infty}(S))^{K \times K}$$
  

$$\cong \{ \Phi : G \to \Psi^{-\infty}(S), \text{ compact support}, \ K \times K \text{ invariant}. \}$$

$$\mathcal{A}_{G}^{\infty}(X) := (\mathcal{L}_{t}(G) \hat{\otimes} \Psi^{-\infty}(S))^{K \times K}$$
$$\cong \{ \Phi : G \to \Psi^{-\infty}(S), \text{ rapid decay}, K \times K \text{ invariant.} \}$$

#### Product:

$$(\Phi_1 * \Phi_2)(g) = \int_G \Phi_1(gh^{-1}) \circ \Phi_2(h) dh.$$

▶ Subalgebras of the Roe algebra  $C^*(X)^G$ :

$$\mathcal{A}_{G}^{c}(X) := (C_{c}^{\infty}(G) \hat{\otimes} \Psi^{-\infty}(S))^{K \times K}$$
  

$$\cong \{ \Phi : G \to \Psi^{-\infty}(S), \text{ compact support}, \ K \times K \text{ invariant}. \}$$

$$\mathcal{A}_{G}^{\infty}(X) := (\mathcal{L}_{t}(G) \hat{\otimes} \Psi^{-\infty}(S))^{K \times K}$$
$$\cong \{ \Phi : G \to \Psi^{-\infty}(S), \text{ rapid decay}, K \times K \text{ invariant.} \}$$

Product:

$$(\Phi_1 * \Phi_2)(g) = \int_G \Phi_1(gh^{-1}) \circ \Phi_2(h) dh.$$

▶ delocalized trace  $\tau_g^X : \mathcal{A}_G^\infty(X) \to \mathbb{C}$  given by:

$$\tau_g^X(\Phi) := \tau_g(\operatorname{Tr}_S(\Phi)).$$



## Delocalized $\eta$ -invariants

X is of bounded geometry and  $\mathcal{A}^{\infty}_{G}(X) \subset C^{*}(X)^{G}$  is closed under holomorphic functional calculus:

$$e^{-tD^2} = rac{1}{2\pi i} \int_C rac{e^{-t\lambda}}{\lambda - D^2} d\lambda \in \mathcal{A}^\infty_{G}(X).$$

Follows from analysis of the resolvent

$$\lambda - D^2 = B_{\lambda} + C_{\lambda}, \qquad B_{\lambda} \in \Psi_c^{-2}(X), \ C_{\lambda} \in \mathcal{A}_G^{\infty}(M),$$

with  $C_{\lambda} \to 0$  as  $\operatorname{Re}(\lambda) \to \infty$ .

## Delocalized $\eta$ -invariants

X is of bounded geometry and  $\mathcal{A}^{\infty}_{G}(X) \subset C^{*}(X)^{G}$  is closed under holomorphic functional calculus:

$$e^{-tD^2} = rac{1}{2\pi i} \int_C rac{e^{-t\lambda}}{\lambda - D^2} d\lambda \in \mathcal{A}^\infty_{\mathcal{G}}(X).$$

Follows from analysis of the resolvent

$$\lambda - D^2 = B_{\lambda} + C_{\lambda}, \qquad B_{\lambda} \in \Psi_c^{-2}(X), \ C_{\lambda} \in \mathcal{A}_G^{\infty}(M),$$

with  $C_{\lambda} \to 0$  as  $\operatorname{Re}(\lambda) \to \infty$ .

Theorem (Piazza-P.-Song-Tang)

The following integral converges:

$$\eta_{m{g}}(D) := rac{1}{\sqrt{\pi}} \int_0^\infty au_{m{g}}^{m{X}} (D \mathrm{e}^{-tD^2}) rac{dt}{\sqrt{t}}$$



## Delocalized $\eta$ -invariants

X is of bounded geometry and  $\mathcal{A}^{\infty}_{G}(X) \subset C^{*}(X)^{G}$  is closed under holomorphic functional calculus:

$$e^{-tD^2} = rac{1}{2\pi i} \int_C rac{e^{-t\lambda}}{\lambda - D^2} d\lambda \in \mathcal{A}^\infty_G(X).$$

Follows from analysis of the resolvent

$$\lambda - D^2 = B_{\lambda} + C_{\lambda}, \qquad B_{\lambda} \in \Psi_c^{-2}(X), \ C_{\lambda} \in \mathcal{A}_G^{\infty}(M),$$

with  $C_{\lambda} \to 0$  as  $\operatorname{Re}(\lambda) \to \infty$ .

Theorem (Piazza-P.-Song-Tang)

The following integral converges:

$$\eta_{m{g}}(D) := rac{1}{\sqrt{\pi}} \int_0^\infty au_{m{g}}^{m{X}} (D \mathrm{e}^{-tD^2}) rac{dt}{\sqrt{t}}$$

N.B: No invertibility or gap assumptions!



**Large time behaviour**: Recall  $D^2 = D_{G,K}^2 + D_S^2$  and decompose

$$L^2(X) = \bigoplus_{\lambda_i \in \sigma(D_S)} \left[ L^2(G) \otimes \mathfrak{p} \otimes L^2(S)_{\lambda_i} \right]^K.$$

Moscovici-Stanton give estimates

$$| au_g^{G/K}(D_{G,K}e^{-D_{G,K}^2})| \leq C_1 e^{-C_2/t} t^{-3/2}$$
 resulting in convergence of

$$\frac{1}{\sqrt{\pi}} \int_1^\infty \tau_g^X (De^{-tD^2}) \frac{dt}{\sqrt{t}}.$$

**Short time behaviour**: rewrite (Hochs–Wang)

$$\tau_g^X(De^{-tD^2}) = \int_X \int_G c_G(g)c_X(gx)\operatorname{tr}(k_t(x,gx))dgdx,$$

with  $k_t(x, y)$  kernel of  $De^{-tD^2}$ , and  $c^X$  cut-off function on X.

**Short time behaviour**: rewrite (Hochs–Wang)

$$\tau_g^X(De^{-tD^2}) = \int_X \int_G c_G(g)c_X(gx)\operatorname{tr}(k_t(x,gx))dgdx,$$

with  $k_t(x,y)$  kernel of  $De^{-tD^2}$ , and  $c^X$  cut-off function on X. Let  $W \subset X$  open subset containing  $X^g$ .

 Gaussian estimates for the heat kernel gives exponential decay of

$$\int_{X\setminus W}\int_G c_G(g)c_X(gx)\mathrm{tr}(k_t(x,gx))dgdx,\quad \text{as }t\downarrow 0.$$

**Short time behaviour**: rewrite (Hochs–Wang)

$$\tau_g^X(De^{-tD^2}) = \int_X \int_G c_G(g)c_X(gx)\mathrm{tr}(k_t(x,gx))dgdx,$$

with  $k_t(x,y)$  kernel of  $De^{-tD^2}$ , and  $c^X$  cut-off function on X. Let  $W \subset X$  open subset containing  $X^g$ .

 Gaussian estimates for the heat kernel gives exponential decay of

$$\int_{X\setminus W}\int_G c_G(g)c_X(gx)\mathrm{tr}(k_t(x,gx))dgdx,\quad \text{as }t\downarrow 0.$$

► An argument of Zhang shows that

$$\frac{1}{\sqrt{t}}\int_{W}\int_{G}c_{G}(g)c_{X}(gx)\mathrm{tr}(k_{t}(x,gx))dgdx=O(1)\quad t\downarrow 0.$$

 $ightharpoonup Y_0$  manifold with boundary, proper cocompact action of G,  $\mathbf{h}$  slice compatible metric,

- Y<sub>0</sub> manifold with boundary, proper cocompact action of G, h slice compatible metric,
- $\hat{Y}:=Y_0\cup_{\partial Y_0}((-\infty,0)\times\partial Y_0)$  manifold with cylindrical ends, with extended metric  $\hat{\mathbf{h}}$ ,

- ➤ Y<sub>0</sub> manifold with boundary, proper cocompact action of G, h
  slice compatible metric,
- $\hat{Y} := Y_0 \cup_{\partial Y_0} ((-\infty, 0) \times \partial Y_0)$  manifold with cylindrical ends, with extended metric  $\hat{\mathbf{h}}$ ,
- Y b-manifold associated to  $\hat{Y}$ , metric  $\hat{\mathbf{h}} = \frac{dx^2}{x^2} + \mathbf{h}$  near  $\partial Y$ .

- ➤ Y<sub>0</sub> manifold with boundary, proper cocompact action of G, h
  slice compatible metric,
- $\hat{Y}:=Y_0\cup_{\partial Y_0}((-\infty,0)\times\partial Y_0)$  manifold with cylindrical ends, with extended metric  $\hat{\mathbf{h}}$ ,
- Y b-manifold associated to  $\hat{Y}$ , metric  $\hat{\mathbf{h}} = \frac{dx^2}{x^2} + \mathbf{h}$  near  $\partial Y$ .

Using *b*-calculus with  $\epsilon$ -bounds on the slice  $S \subset Y$ :

$$0 \longrightarrow \mathcal{A}^c_G(Y) \longrightarrow {}^b\mathcal{A}^c_G(Y) \stackrel{I}{\longrightarrow} {}^b\mathcal{A}^c_{G,\mathbb{R}}(\operatorname{cyl}(\partial Y)) \longrightarrow 0.$$



- ➤ Y<sub>0</sub> manifold with boundary, proper cocompact action of G, h
  slice compatible metric,
- $\hat{Y} := Y_0 \cup_{\partial Y_0} ((-\infty, 0) \times \partial Y_0)$  manifold with cylindrical ends, with extended metric  $\hat{\mathbf{h}}$ ,
- Y b-manifold associated to  $\hat{Y}$ , metric  $\hat{\mathbf{h}} = \frac{dx^2}{x^2} + \mathbf{h}$  near  $\partial Y$ .

Using *b*-calculus with  $\epsilon$ -bounds on the slice  $S \subset Y$ :

$$0 \longrightarrow \mathcal{A}_{G}^{c}(Y) \longrightarrow {}^{b}\mathcal{A}_{G}^{c}(Y) \stackrel{I}{\longrightarrow} {}^{b}\mathcal{A}_{G,\mathbb{R}}^{c}(\operatorname{cyl}(\partial Y)) \longrightarrow 0.$$

Using Lafforgue's algebra:

$$0 \longrightarrow \mathcal{A}_{G}^{\infty}(Y) \longrightarrow {}^{b}\mathcal{A}_{G}^{\infty}(Y) \stackrel{I}{\longrightarrow} {}^{b}\mathcal{A}_{G,\mathbb{R}}^{\infty}(\operatorname{cyl}(\partial Y)) \longrightarrow 0.$$



#### Index classes

Invariant Dirac operator D

ightharpoonup of product type near  $\partial Y$ 

Invariant Dirac operator D

- ightharpoonup of product type near  $\partial Y$
- ▶  $D_{\partial Y}$  is  $L^2$ -invertible.

#### Invariant Dirac operator D

- ightharpoonup of product type near  $\partial Y$
- ►  $D_{\partial Y}$  is  $L^2$ -invertible.

#### Choose:

- $lackbox{ }Q^{\sigma}$  be a symbolic b-parametrix for D:  $D^+Q^{\sigma}=1-R_{\sigma}^-$
- $ightharpoonup Q^b = Q^\sigma Q'$  with  $Q' = s((I(D^+)^{-1}I(R^-_\sigma)))$

#### Invariant Dirac operator D

- ightharpoonup of product type near  $\partial Y$
- D<sub>∂Y</sub> is L<sup>2</sup>-invertible.

#### Choose:

- $Q^{\sigma}$  be a symbolic *b*-parametrix for *D*:  $D^{+}Q^{\sigma}=1-R_{\sigma}^{-}$
- $ightharpoonup Q^b = Q^\sigma Q'$  with  $Q' = s((I(D^+)^{-1}I(R^-_\sigma))$

Connes-Skandalis projector

$$(D^+Q^b = 1 - {}^bS_-, Q^bD^{-1} = 1 - {}^bS_+)$$

$$P_{Q}^{b} := \begin{pmatrix} {}^{b}S_{+}^{2} & {}^{b}S_{+}(I + {}^{b}S_{+})Q^{b} \\ {}^{b}S_{-}D^{+} & I - {}^{b}S_{-}^{2} \end{pmatrix}$$

#### Invariant Dirac operator D

- ightharpoonup of product type near  $\partial Y$
- ►  $D_{\partial Y}$  is  $L^2$ -invertible.

#### Choose:

- $lackbox{ }Q^{\sigma}$  be a symbolic b-parametrix for D:  $D^+Q^{\sigma}=1-R_{\sigma}^-$
- $ightharpoonup Q^b = Q^\sigma Q'$  with  $Q' = s((I(D^+)^{-1}I(R^-_\sigma))$

Connes-Skandalis projector

$$(D^+Q^b = 1 - {}^bS_-, Q^bD^{-1} = 1 - {}^bS_+)$$

$$P_Q^b := \begin{pmatrix} {}^bS_+^2 & {}^bS_+(I + {}^bS_+)Q^b \\ {}^bS_-D^+ & I - {}^bS_-^2 \end{pmatrix}$$

gives an index class

$$\operatorname{\mathsf{Ind}}_\infty(D) := [P_Q^b] - [e_1] \in \mathcal{K}_0(\mathcal{A}_G^\infty(Y)) = \mathcal{K}_0(C^*(Y_0 \subset Y)^G)$$

Short exact sequence

$$0 \longrightarrow J \longrightarrow A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0.$$

Short exact sequence

$$0 \longrightarrow J \longrightarrow A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0.$$

▶  $[(P, Q, p_t)] \in K_0(A, B)$  with  $P, Q \in M_n(A)$  idempotents and  $\pi(P) \stackrel{p_t}{\sim} \pi(Q)$ .

Short exact sequence

$$0 \longrightarrow J \longrightarrow A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0.$$

- ►  $[(P, Q, p_t)] \in K_0(A, B)$  with  $P, Q \in M_n(A)$  idempotents and  $\pi(P) \stackrel{p_t}{\sim} \pi(Q)$ .
- excision isomorphism  $\alpha_{\rm ex}: K_0(J) \longrightarrow K_0(A,B)$  given by  $\alpha_{\rm ex}([(P,Q)]) = [(P,Q,{\bf c})]$  with  ${\bf c}$  denoting the constant path.

Short exact sequence

$$0 \longrightarrow J \longrightarrow A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0.$$

- ▶  $[(P, Q, p_t)] \in K_0(A, B)$  with  $P, Q \in M_n(A)$  idempotents and  $\pi(P) \stackrel{p_t}{\sim} \pi(Q)$ .
- excision isomorphism  $\alpha_{\rm ex}: K_0(J) \longrightarrow K_0(A,B)$  given by  $\alpha_{\rm ex}([(P,Q)]) = [(P,Q,{\bf c})]$  with  ${\bf c}$  denoting the constant path.

Connes-Moscovici projector:

$$V(D) := \begin{pmatrix} e^{-D^-D^+} & e^{-\frac{1}{2}D^-D^+} \left( \frac{I - e^{-D^-D^+}}{D^-D^+} \right) D^- \\ e^{-\frac{1}{2}D^+D^-}D^+ & I - e^{-D^+D^-} \end{pmatrix} \in M_2({}^b\mathcal{A}_G^{\infty}(Y))$$

Short exact sequence

$$0 \longrightarrow J \longrightarrow A \stackrel{\pi}{\longrightarrow} B \longrightarrow 0.$$

- ▶  $[(P, Q, p_t)] \in K_0(A, B)$  with  $P, Q \in M_n(A)$  idempotents and  $\pi(P) \stackrel{\rho_t}{\sim} \pi(Q)$ .
- excision isomorphism  $\alpha_{\rm ex}: K_0(J) \longrightarrow K_0(A,B)$  given by  $\alpha_{\rm ex}([(P,Q)]) = [(P,Q,{\bf c})]$  with  ${\bf c}$  denoting the constant path.

#### Connes-Moscovici projector:

$$V(D) := \begin{pmatrix} e^{-D^{-}D^{+}} & e^{-\frac{1}{2}D^{-}D^{+}} \left( \frac{I - e^{-D^{-}D^{+}}}{D^{-}D^{+}} \right) D^{-} \\ e^{-\frac{1}{2}D^{+}D^{-}}D^{+} & I - e^{-D^{+}D^{-}} \end{pmatrix} \in M_{2}({}^{b}\mathcal{A}_{G}^{\infty}(Y))$$

#### Relative index class

 $\operatorname{Ind}_{\infty}(D, D_{\partial}) \in K_0({}^b \mathcal{A}_G^{\infty}(Y_0), {}^b \mathcal{A}_{G, \mathbb{R}}^{\infty}(\operatorname{cyl}(\partial Y)))$ :

$$\left(V(D),e_1,q_t
ight),\;\;t\in[1,+\infty]\,,\;\; ext{with}\;\;q_t:=egin{cases} V(tD_{ ext{cyl}}) & ext{if}\;\;t\in[1,+\infty)\ e_1 & ext{if}\;\;t=\infty\ \end{array}$$

## Relative cyclic cocycles

Recall the delocalized trace:

$$\tau_g^Y: \mathcal{A}_G^\infty(Y) \to \mathbb{C}, \qquad \tau_g^Y(\Phi) := \tau_g(\mathrm{Tr}_S(\Phi)).$$

## Relative cyclic cocycles

Recall the delocalized trace:

$$\tau_g^Y: \mathcal{A}_G^\infty(Y) \to \mathbb{C}, \qquad \tau_g^Y(\Phi) := \tau_g(\mathrm{Tr}_S(\Phi)).$$

▶ Using the *b*-trace  $\operatorname{Tr}_S^b(k) := \int_S^b k(x, x) dx$ ,

$$\tau_g^{Y,r}:{}^b\mathcal{A}_G^\infty(Y)\to\mathbb{C},\qquad \tau_g^{Y,r}(\Phi):=\tau_g(\mathrm{Tr}_S^b(\Phi)),$$

# Relative cyclic cocycles

► Recall the delocalized trace:

$$\tau_g^Y: \mathcal{A}_G^\infty(Y) \to \mathbb{C}, \qquad \tau_g^Y(\Phi) := \tau_g(\mathrm{Tr}_S(\Phi)).$$

▶ Using the *b*-trace  $\operatorname{Tr}_S^b(k) := \int_S^b k(x,x) dx$ ,

$$\tau_g^{Y,r}:{}^b\mathcal{A}_G^\infty(Y)\to\mathbb{C},\qquad \tau_g^{Y,r}(\Phi):=\tau_g(\mathrm{Tr}_S^b(\Phi)),$$

▶ 1-cocycle on  ${}^b\mathcal{A}^{\infty}_{G,\mathbb{R}}(\text{cyl}(\partial Y))$ :

$$\sigma_{\mathsf{g}}^{\partial \mathsf{Y}}(\mathsf{A}_0,\mathsf{A}_1) := \frac{\mathsf{i}}{2\pi} \int_{\mathbb{R}} \tau_{\mathsf{g}}^{\partial \mathsf{Y}}(\partial_{\lambda} \mathsf{I}(\mathsf{A}_0,\lambda) \circ \mathsf{I}(\mathsf{A}_1,\lambda) d\lambda,$$

where the indicial family of  $A \in {}^b\mathcal{A}^{\infty}_{G,\mathbb{R}}(\operatorname{cyl}(\partial Y))$ , denoted  $I(A,\lambda)$ , appears.



# Index pairings

▶ Recall Melrose formula for the *b*-trace:

$${}^b\mathrm{Tr}_{\mathcal{S}}([A_0,A_1])=rac{i}{2\pi}\int_{\mathbb{R}}\mathrm{Tr}_{\partial\mathcal{S}}(\partial_{\lambda}(A_0,\lambda)\circ I(A_1,\lambda))d\lambda$$

# Index pairings

▶ Recall Melrose formula for the *b*-trace:

$${}^b\mathrm{Tr}_{\mathcal{S}}([A_0,A_1])=rac{i}{2\pi}\int_{\mathbb{R}}\mathrm{Tr}_{\partial\mathcal{S}}(\partial_{\lambda}(A_0,\lambda)\circ I(A_1,\lambda))d\lambda$$

▶ This implies

$$\begin{pmatrix} (b+B) & -I^* \\ 0 & -(b+B) \end{pmatrix} \begin{pmatrix} \tau_g^{Y,r} \\ \sigma_g^{\partial Y} \end{pmatrix} = 0,$$

# Index pairings

Recall Melrose formula for the b-trace:

$${}^b\mathrm{Tr}_{\mathcal{S}}([A_0,A_1])=rac{i}{2\pi}\int_{\mathbb{R}}\mathrm{Tr}_{\partial\mathcal{S}}(\partial_{\lambda}(A_0,\lambda)\circ I(A_1,\lambda))d\lambda$$

▶ This implies

$$\begin{pmatrix} (b+B) & -I^* \\ 0 & -(b+B) \end{pmatrix} \begin{pmatrix} \tau_g^{Y,r} \\ \sigma_g^{\partial Y} \end{pmatrix} = 0,$$

and leads to

$$\langle \tau_g^Y, \mathsf{Ind}_\infty(D) \rangle = \langle (\tau_g^{Y,r}, \sigma_g), \mathsf{Ind}_\infty(D, D_\partial) \rangle.$$



### Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_{\mathsf{g}}^{\mathsf{Y}}, \mathsf{Ind}_{\infty}(D) \rangle = \int_{\mathsf{Y}_0^{\mathsf{g}}} c^{\mathsf{g}} \mathrm{AS}_{\mathsf{g}}(D_0) - \frac{1}{2} \eta_{\mathsf{g}}(D_{\partial \mathsf{Y}}),$$

where

$$AS_g(D_0) = \frac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

### Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_{\mathsf{g}}^{\mathsf{Y}}, \mathsf{Ind}_{\infty}(D) \rangle = \int_{\mathsf{Y}_0^{\mathsf{g}}} c^{\mathsf{g}} \mathrm{AS}_{\mathsf{g}}(D_0) - \frac{1}{2} \eta_{\mathsf{g}}(D_{\partial \mathsf{Y}}),$$

where

$$AS_g(D_0) = \frac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

### Theorem (Piazza–P.–Song–Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_g^Y, \operatorname{Ind}_{\infty}(D) \rangle = \int_{Y_0^g} c^g AS_g(D_0) - \frac{1}{2} \eta_g(D_{\partial Y}),$$

where

$$AS_g(D_0) = \frac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

▶ Previous work of Hochs–Wang–Wang assumes  $G/Z_g$  compact.

### Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_g^Y, \operatorname{Ind}_{\infty}(D) \rangle = \int_{Y_0^g} c^g AS_g(D_0) - \frac{1}{2} \eta_g(D_{\partial Y}),$$

where

$$AS_g(D_0) = rac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

- ▶ Previous work of Hochs–Wang–Wang assumes  $G/Z_g$  compact.
- Closed manifold case is due to Hochs-Wang.

Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_{\mathbf{g}}^{\mathbf{Y}}, \operatorname{Ind}_{\infty}(D) \rangle = \int_{\mathbf{Y}_{0}^{\mathbf{g}}} c^{\mathbf{g}} \operatorname{AS}_{\mathbf{g}}(D_{0}) - \frac{1}{2} \eta_{\mathbf{g}}(D_{\partial \mathbf{Y}}),$$

where

$$AS_g(D_0) = \frac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

# Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_g^Y, \operatorname{Ind}_{\infty}(D) \rangle = \int_{Y_0^g} c^g AS_g(D_0) - \frac{1}{2} \eta_g(D_{\partial Y}),$$

where

$$AS_g(D_0) = \frac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

#### Proof in 2 steps:

$$\langle (\tau_g^{Y,r}, \sigma_g), \mathsf{Ind}_{\infty}(D, D_{\partial}) \rangle = \tau_{g,s}^{Y,r}(\mathsf{e}^{D^2}) + \int_1^{\infty} \sigma_g^{\partial Y}([\dot{q}_t, q_t], q_t) dt$$

# Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_g^Y, \operatorname{Ind}_{\infty}(D) \rangle = \int_{Y_0^g} c^g AS_g(D_0) - \frac{1}{2} \eta_g(D_{\partial Y}),$$

where

$$AS_g(D_0) = \frac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

### Proof in 2 steps:

$$\langle (\tau_g^{Y,r}, \sigma_g), \mathsf{Ind}_{\infty}(D, D_{\partial}) \rangle = \tau_{g,s}^{Y,r}(\mathsf{e}^{D^2}) + \int_1^{\infty} \sigma_g^{\partial Y}([\dot{q}_t, q_t], q_t) dt$$

Pairing on the bulk with  $\tau_g^{Y,r}$  in the spirit of Melrose's proof of the APS index theorem using Getzler rescaling.

## Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\langle \tau_{\mathbf{g}}^{Y}, \mathsf{Ind}_{\infty}(D) \rangle = \int_{Y_{0}^{\mathbf{g}}} c^{\mathbf{g}} \mathrm{AS}_{\mathbf{g}}(D_{0}) - \frac{1}{2} \eta_{\mathbf{g}}(D_{\partial Y}),$$

where

$$AS_g(D_0) = \frac{\hat{A}(Y_0^g) \operatorname{tr}(ge^{R^L})}{\det^{1/2}(1 - ge^{-R^N})}$$

### Proof in 2 steps:

$$\langle (\tau_g^{Y,r}, \sigma_g), \mathsf{Ind}_{\infty}(D, D_{\partial}) \rangle = \tau_{g,s}^{Y,r}(\mathsf{e}^{D^2}) + \int_1^{\infty} \sigma_g^{\partial Y}([\dot{q}_t, q_t], q_t) dt$$

- Pairing on the bulk with  $\tau_g^{Y,r}$  in the spirit of Melrose's proof of the APS index theorem using Getzler rescaling.
- Pairing on the boundary with  $\sigma_g^{\partial Y}$  produces a long complicated expression that we show that this equals  $\eta_g(D)$ .

For the signature operator  $D_{\partial}$  is not invertible.

What if  $D_{\partial}$  is not  $L^2$ -invertible?

$$D = D_{\mathcal{G},\mathcal{K}} \otimes 1 + \gamma \otimes D_{\mathcal{S}}, \qquad \gamma := egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

For the signature operator  $D_{\partial}$  is not invertible.

What if  $D_{\partial}$  is not  $L^2$ -invertible?

$$D = D_{\mathcal{G}, \mathcal{K}} \otimes 1 + \gamma \otimes D_{\mathcal{S}}, \qquad \gamma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

**P** global perturbation on the slice:  $D_{\vartheta} = D + \gamma \vartheta$ ,  $\vartheta > 0$ ,



### For the signature operator $D_{\partial}$ is not invertible.

What if  $D_{\partial}$  is not  $L^2$ -invertible?

$$D = D_{\mathcal{G},\mathcal{K}} \otimes 1 + \gamma \otimes D_{\mathcal{S}}, \qquad \gamma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- **P** global perturbation on the slice:  $D_{\vartheta} = D + \gamma \vartheta$ ,  $\vartheta > 0$ ,
- ▶ global perturbation  $D_{\Theta} := D + \Theta$ ,  $\Theta > 0$ , not in the  $L^2$ -spectrum of D,

### For the signature operator $D_{\partial}$ is not invertible.

What if  $D_{\partial}$  is not  $L^2$ -invertible?

$$D = D_{\mathcal{G},\mathcal{K}} \otimes 1 + \gamma \otimes D_{\mathcal{S}}, \qquad \gamma := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- global perturbation on the slice:  $D_{\vartheta} = D + \gamma \vartheta$ ,  $\vartheta > 0$ ,
- ▶ global perturbation  $D_{\Theta} := D + \Theta$ ,  $\Theta > 0$ , not in the  $L^2$ -spectrum of D,
- ▶ general perturbation D + C with  $C \in \mathcal{A}_G^c(X)$ . (always exists!)

## Global perturbation on the slice

▶ Recall  $D = D_{G,K} \otimes 1 + \gamma \otimes D_S$ . The Connes–Kasparov correspondence gives

$$D \ L^2 - {\sf invertible} \iff D_S \ L^2 - {\sf invertible}$$
 (Consider Dirac induction of  ${\sf ker}(D_S)$ )

## Global perturbation on the slice

▶ Recall  $D = D_{G,K} \otimes 1 + \gamma \otimes D_S$ . The Connes–Kasparov correspondence gives

$$D L^2$$
 – invertible  $\iff$   $D_S L^2$  – invertible

(Consider Dirac induction of  $ker(D_S)$ )

▶  $D = D + \gamma \vartheta$ ,  $\vartheta > 0$ , smaller than the lowest eigenvalue of  $D_S$ .

$$\eta_{\mathbf{g}}(D_{\vartheta}) := \mathrm{LIM}_{\mathbf{s}\downarrow 0} \frac{1}{\sqrt{\pi}} \int_{\mathbf{s}}^{\infty} \tau_{\mathbf{g}}^{\mathbf{X}} \left( D_{\vartheta} e^{-tD_{\vartheta}^2} \right) \frac{dt}{\sqrt{t}}$$

### Global perturbation on the slice

▶ Recall  $D = D_{G,K} \otimes 1 + \gamma \otimes D_S$ . The Connes–Kasparov correspondence gives

$$D L^2$$
 – invertible  $\iff$   $D_5 L^2$  – invertible

(Consider Dirac induction of  $ker(D_S)$ )

▶  $D = D + \gamma \vartheta$ ,  $\vartheta > 0$ , smaller than the lowest eigenvalue of  $D_S$ .

$$\eta_{\mathsf{g}}(D_{\vartheta}) := \mathrm{LIM}_{\mathsf{s}\downarrow 0} \frac{1}{\sqrt{\pi}} \int_{\mathsf{s}}^{\infty} \tau_{\mathsf{g}}^{\mathsf{X}} \left( D_{\vartheta} e^{-tD_{\vartheta}^2} \right) \frac{dt}{\sqrt{t}}$$

▶ APS-type index theorem, by letting  $\vartheta \downarrow 0$ :

Theorem (Piazza-P.-Song-Tang)

Assume G is of equal rank, i.e., has discrete series. Then

$$\left\langle \operatorname{Ind}_{\infty}(D_{\vartheta}), \tau_{g}^{Y} \right\rangle = \int_{Y_{o}^{g}} c^{g} \operatorname{AS}_{g}(D_{0}) - \frac{1}{2} \left( \eta_{g}(D_{\partial Y}) + \left\langle \operatorname{Ind}_{D}(\ker(D_{S})), \tau_{g} \right\rangle \right)$$

### Global perturbation

► Assume *D* is not invertible, but has a spectral gap. **Global perturbation** 

 $D_{\Theta} := D + \Theta$ ,  $\Theta > 0$ , smaller that the gap.

## Global perturbation

► Assume *D* is not invertible, but has a spectral gap. **Global perturbation** 

$$D_{\Theta} := D + \Theta$$
,  $\Theta > 0$ , smaller that the gap.

▶ Perturbed delocalized  $\eta$ -invariant:

$$\eta_{\mathbf{g}}(D_{\Theta}) := \mathrm{LIM}_{s\downarrow 0} \frac{1}{\sqrt{\pi}} \int_{s}^{\infty} \tau_{\mathbf{g}}^{X} \left( D_{\Theta} e^{-tD_{\Theta}^{2}} \right) \frac{dt}{\sqrt{t}}$$

## Global perturbation

► Assume *D* is not invertible, but has a spectral gap. **Global perturbation** 

$$D_{\Theta} := D + \Theta$$
,  $\Theta > 0$ , smaller that the gap.

**Perturbed delocalized**  $\eta$ -invariant:

$$\eta_{g}(D_{\Theta}) := LIM_{s\downarrow 0} \frac{1}{\sqrt{\pi}} \int_{s}^{\infty} \tau_{g}^{X} \left(D_{\Theta} e^{-tD_{\Theta}^{2}}\right) \frac{dt}{\sqrt{t}}$$

▶ APS-type index theorem, by letting  $\Theta \downarrow 0$ :

Theorem (Piazza–P.–Song–Tang)

Assume that D has a spectral gap.

$$\left\langle \operatorname{Ind}_{\infty}(D_{\vartheta}), \tau_{g}^{Y} \right\rangle = \int_{Y_{g}^{g}} c^{g} \operatorname{AS}_{g}(D_{0}) - \frac{1}{2} \left( \eta_{g}(D_{\partial Y}) + \left\langle \Pi_{\ker(D_{\partial})}, \tau_{g} \right\rangle \right)$$

Previous cases work under a gap assumption. We now consider

$$D+C$$
,  $C \in \mathcal{A}^{c}_{G}(X)$ ,  $D+C$  is  $L^{2}$  – invertible.

Previous cases work under a gap assumption. We now consider

$$D+C$$
,  $C \in \mathcal{A}_{G}^{c}(X)$ ,  $D+C$  is  $L^{2}$  – invertible.

▶ Perturbed heat kernel: write  $(D+C)^2 = D^2 + A$ ,  $A \in \mathcal{A}_G^c(X)$  and expand in a Volterra series.

Previous cases work under a gap assumption. We now consider

$$D+C$$
,  $C \in \mathcal{A}_{G}^{c}(X)$ ,  $D+C$  is  $L^{2}$  – invertible.

- ▶ Perturbed heat kernel: write  $(D+C)^2 = D^2 + A$ ,  $A \in \mathcal{A}_G^c(X)$  and expand in a Volterra series.
- Perturbed delocalized η-invariant:

$$\eta_{\mathsf{g}}(D+C) := \frac{1}{\sqrt{\pi}} \int_0^\infty \tau_{\mathsf{g}}^{\mathsf{X}}((D+C)e^{-t(D+C)^2}) \frac{dt}{\sqrt{t}}$$

Previous cases work under a gap assumption. We now consider

$$D+C$$
,  $C \in \mathcal{A}^{c}_{G}(X)$ ,  $D+C$  is  $L^{2}$  – invertible.

- ▶ Perturbed heat kernel: write  $(D + C)^2 = D^2 + A$ ,  $A \in \mathcal{A}_G^c(X)$  and expand in a Volterra series.
- Perturbed delocalized η-invariant:

$$\eta_g(D+C) := \frac{1}{\sqrt{\pi}} \int_0^\infty \tau_g^X((D+C)e^{-t(D+C)^2}) \frac{dt}{\sqrt{t}}$$

► APS-type index theorem:

Theorem (Piazza–P.–Song–Tang)

Assume that  $D_{\partial} + B_{\partial}^{\infty}$  is  $L^2$ -invertible.

$$\left\langle \operatorname{Ind}_{\infty}(D, D_{\partial} + B_{\partial}^{\infty}), (\tau_{g}^{Y,r}, \sigma_{g}^{\partial Y}) \right\rangle = \int_{Y_{0}^{g}} c^{g} \operatorname{AS}_{g}(D_{0}) - \frac{1}{2} \eta_{g}(D_{\partial} + B_{\partial}^{\infty})$$

## Higher versions

Song-Tang: For any cuspidal parabolic subgroup  $P = MAN \subset G$  and  $g \in G$  semisimple there exists a cyclic cocycle  $\Phi_g^P$  of degree dim(A) on  $\mathcal{L}_t(G)$ .

### Higher versions

- ▶ Song–Tang: For any cuspidal parabolic subgroup  $P = MAN \subset G$  and  $g \in G$  semisimple there exists a cyclic cocycle  $\Phi_g^P$  of degree dim(A) on  $\mathcal{L}_t(G)$ .
- ightharpoonup  $\Rightarrow$  cyclic cocycle  $\Phi_{Y,g}^P$  on  $\mathcal{A}_G^\infty(Y)$ .

# Higher versions

- ▶ Song–Tang: For any cuspidal parabolic subgroup  $P = MAN \subset G$  and  $g \in G$  semisimple there exists a cyclic cocycle  $\Phi_g^P$  of degree dim(A) on  $\mathcal{L}_t(G)$ .
- ightharpoonup  $\Rightarrow$  cyclic cocycle  $\Phi_{Y,g}^P$  on  $\mathcal{A}_{\mathcal{G}}^{\infty}(Y)$ .
- ► Higher APS index theorem:

Theorem (Piazza-P.-Song-Tang)

Assume that  $D_{\partial}$  is  $L^2$ -invertible.

$$\left\langle \Phi_{Y,g}^P, \operatorname{Ind}_{\infty}(D) \right\rangle = \int_{(Y_0/AN)^g} c_{Y_0/AN}^g AS(Y_0/AN)_g - \frac{1}{2} \eta_g(D_{\partial Y_M}),$$

where  $Y_M := M \times_{K \cap M} S$  is the slice decomposition of Y/AM with its M-action.

### $\rho$ -numbers

▶ If  $g \in G$  is not elliptic, any element of its conjugacy class  $C_g$  will act fixed point free on any proper G-manifold W:

$$\int_{W^g} c^g A S_g(W) = 0.$$

#### $\rho$ -numbers

▶ If  $g \in G$  is not elliptic, any element of its conjugacy class  $C_g$  will act fixed point free on any proper G-manifold W:

$$\int_{W^g} c^g A S_g(W) = 0.$$

▶ **h** slice compatible metric of positive scalar curvature:  $D_{\mathbf{h}}$  is  $L^2$ -invertible:

$$\rho_g(\mathbf{h}) := \eta_g(D_{\mathbf{h}}).$$

APS index theorem implies that this is bordism invariant.

#### $\rho$ -numbers

▶ If  $g \in G$  is not elliptic, any element of its conjugacy class  $C_g$  will act fixed point free on any proper G-manifold W:

$$\int_{W^g} c^g A S_g(W) = 0.$$

▶ **h** slice compatible metric of positive scalar curvature:  $D_{\mathbf{h}}$  is  $L^2$ -invertible:

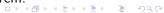
$$\rho_{\mathbf{g}}(\mathbf{h}) := \eta_{\mathbf{g}}(D_{\mathbf{h}}).$$

APS index theorem implies that this is bordism invariant.

▶ **f** :  $X_1 o X_2$  *G*-homotopy invariant. Fukumoto: there exists a perturbation  $B_f$  making the signature operator on  $X := X_1 \sqcup (-X_2)$ :

$$\rho_{\mathbf{g}}(\mathbf{f}) := \eta_{\mathbf{g}}(D_{\mathbf{X}}^{\mathrm{sign}} + B_{\mathbf{f}}).$$

Bordism invariant by the APS index theorem.



#### Literature

- ▶ P. Piazza and H.P.: Higher genera for proper actions of Lie groups AKT (2019) arXiv:1801.06676
- P. Piazza and H.P.: Higher genera for proper actions of Lie groups part II: the case of manifolds with boundary AKT (2021) arXiv:2010.02783
- P. Piazza, H.P., Y. Song and X. Tang. Higher orbital integrals, rho numbers and index theory arXiv: 2108.00982
- ▶ P. Piazza, H.P., Y. Song and X. Tang. *Perturbed Dirac operators and index theory on G-proper manifolds.* to appear.