Crossed products by \mathbb{R}_{+}^{*} and calculus on filtered manifolds

Clément Cren

Université Paris-Est Créteil

08/03/2023
Athens, Non Commutative Geometry and Representation Theory

Plan for the talk :

- I - The commutative case

Plan for the talk:

- I - The commutative case
- II - What happens in the noncommutative case?

Plan for the talk:

- I - The commutative case
- II - What happens in the noncommutative case?
- III - Symbols, decomposition and isomorphism
M compact manifold. Connes' tangent groupoid $\mathbb{T} M=M \times M \times \mathbb{R}^{*} \sqcup T M \times\{0\} \rightrightarrows M \times \mathbb{R}$.
M compact manifold. Connes' tangent groupoid $\mathbb{T}^{+} M=M \times M \times \mathbb{R}_{+}^{*} \sqcup T M \times\{0\} \rightrightarrows M \times \mathbb{R}_{+}$.
M compact manifold. Connes' tangent groupoid $\mathbb{T}^{+} M=M \times M \times \mathbb{R}_{+}^{*} \sqcup T M \times\{0\} \rightrightarrows M \times \mathbb{R}_{+}$.
Yields C^{*}-extension :

$$
0 \longrightarrow \mathcal{C}_{0}\left(\mathbb{R}_{+}^{*}, \mathcal{K}\right) \longrightarrow \mathcal{C}^{*}\left(\mathbb{T}^{+} M\right) \longrightarrow \mathcal{C}_{0}\left(T^{*} M\right) \longrightarrow 0
$$

Zoom action:

$$
\begin{aligned}
\alpha_{\lambda}:(x, y, t) & \mapsto\left(x, y, \lambda^{-1} t\right) \\
(x, \xi, 0) & \mapsto(x, \lambda \xi, 0)
\end{aligned}
$$

$\alpha_{\lambda} \in \operatorname{Aut}\left(\mathbb{T}^{+} M\right), \lambda>0$.

Zoom action:

$$
\begin{aligned}
\alpha_{\lambda}:(x, y, t) & \mapsto\left(x, y, \lambda^{-1} t\right) \\
(x, \xi, 0) & \mapsto(x, \lambda \xi, 0)
\end{aligned}
$$

$\alpha_{\lambda} \in \operatorname{Aut}\left(\mathbb{T}^{+} M\right), \lambda>0$.
Define $C_{0}^{*}\left(\mathbb{T}^{+} M\right)$ as the pre-image of $\mathcal{C}_{0}\left(T^{*} M \backslash 0\right)$. The action (by pullback) restricts to $\mathbb{R}_{+}^{*} \curvearrowright C_{0}^{*}\left(\mathbb{T}^{+} M\right)$.

Theorem (Debord, Skandalis '13)

There exists an (explicit) Morita equivalence between the crossed product of the exact sequence of the tangent groupoid

$$
0 \longrightarrow \mathcal{K} \otimes \mathcal{K} \longrightarrow C_{0}^{*}\left(\mathbb{T}^{+} M\right) \rtimes \mathbb{R}_{+}^{*} \longrightarrow \mathcal{C}\left(\mathbb{S}^{*} M\right) \otimes \mathcal{K} \longrightarrow 0
$$

and the one of pseudodifferential operators

$$
0 \longrightarrow \mathcal{K} \longrightarrow \Psi^{*}(M) \longrightarrow \mathcal{C}\left(\mathbb{S}^{*} M\right) \longrightarrow 0
$$

where $\Psi^{*}(M)$ is the C^{*}-closure of the algebra of order $0 \Psi D O$.

Theorem (Debord, Skandalis '13)

There exists an (explicit) Morita equivalence between the crossed product of the exact sequence of the tangent groupoid

$$
0 \longrightarrow \mathcal{K} \otimes \mathcal{K} \longrightarrow C_{0}^{*}\left(\mathbb{T}^{+} M\right) \rtimes \mathbb{R}_{+}^{*} \longrightarrow \mathcal{C}\left(\mathbb{S}^{*} M\right) \otimes \mathcal{K} \longrightarrow 0
$$

and the one of pseudodifferential operators

$$
0 \longrightarrow \mathcal{K} \longrightarrow \Psi^{*}(M) \longrightarrow \mathcal{C}\left(\mathbb{S}^{*} M\right) \longrightarrow 0
$$

where $\Psi^{*}(M)$ is the C^{*}-closure of the algebra of order $0 \Psi D O$.
One can actually construct an isomorphism $\Psi^{*}(M) \rtimes \mathbb{R} \cong C_{0}^{*}\left(\mathbb{T}^{+} M\right)$ equivariant for the \mathbb{R}_{+}^{*}-actions. It is the conjugation by complex powers of a laplacian.

Theorem (Debord, Skandalis '13)

There exists an (explicit) Morita equivalence between the crossed product of the exact sequence of the tangent groupoid

$$
0 \longrightarrow \mathcal{K} \otimes \mathcal{K} \longrightarrow C_{0}^{*}\left(\mathbb{T}^{+} M\right) \rtimes \mathbb{R}_{+}^{*} \longrightarrow \mathcal{C}\left(\mathbb{S}^{*} M\right) \otimes \mathcal{K} \longrightarrow 0
$$

and the one of pseudodifferential operators

$$
0 \longrightarrow \mathcal{K} \longrightarrow \Psi^{*}(M) \longrightarrow \mathcal{C}\left(\mathbb{S}^{*} M\right) \longrightarrow 0
$$

where $\Psi^{*}(M)$ is the C^{*}-closure of the algebra of order $0 \Psi D O$.
One can actually construct an isomorphism $\Psi^{*}(M) \rtimes \mathbb{R} \cong C_{0}^{*}\left(\mathbb{T}^{+} M\right)$ equivariant for the \mathbb{R}_{+}^{*}-actions. It is the conjugation by complex powers of a laplacian. Notice the \mathbb{R} action on the algebra of symbols $\mathcal{C}\left(\mathbb{S}^{*} M\right)$ is trivial.
M compact manifold. Filtration by subbundles $H^{1} \subset \cdots \subset H^{r}=T M$ with $\left[\Gamma\left(H^{i}\right), \Gamma\left(H^{j}\right)\right]$. Replace $T M$ by $T_{H} M \rightarrow M$ bundle of nilpotent Lie groups. Analog Connes' tangent groupoid $\mathbb{T}_{H} M=M \times M \times \mathbb{R}^{*} \sqcup T_{H} M \times\{0\} \rightrightarrows M \times \mathbb{R}$ (Choi, Ponge, Van Erp, Yuncken...).
M compact manifold. Filtration by subbundles $H^{1} \subset \cdots \subset H^{r}=T M$ with $\left[\Gamma\left(H^{i}\right), \Gamma\left(H^{j}\right)\right]$. Replace $T M$ by $T_{H} M \rightarrow M$ bundle of nilpotent Lie groups. Analog Connes' tangent groupoid $\mathbb{T}_{H}^{+} M=M \times M \times \mathbb{R}_{+}^{*} \sqcup T_{H} M \times\{0\} \rightrightarrows M \times \mathbb{R}_{+}$ (Choi, Ponge, Van Erp, Yuncken...).
M compact manifold. Filtration by subbundles $H^{1} \subset \cdots \subset H^{r}=T M$ with $\left[\Gamma\left(H^{i}\right), \Gamma\left(H^{j}\right)\right]$. Replace $T M$ by $T_{H} M \rightarrow M$ bundle of nilpotent Lie groups. Analog Connes' tangent groupoid $\mathbb{T}_{H}^{+} M=M \times M \times \mathbb{R}_{+}^{*} \sqcup T_{H} M \times\{0\} \rightrightarrows M \times \mathbb{R}_{+}$ (Choi, Ponge, Van Erp, Yuncken...).
Yields C^{*}-extension :

$$
0 \longrightarrow \mathcal{C}_{0}\left(\mathbb{R}_{+}^{*}, \mathcal{K}\right) \longrightarrow C^{*}\left(\mathbb{T}_{H}^{+} M\right) \longrightarrow C^{*}\left(T_{H} M\right) \longrightarrow 0
$$

$T_{H} M$ integrates $\mathfrak{t}_{H} M=H^{1} \oplus H^{2} / H^{1} \oplus \cdots \oplus H^{r} / H^{r-1}$.
$T_{H} M$ integrates $\mathfrak{t}_{H} M=H^{1} \oplus H^{2} / H^{1} \oplus \cdots \oplus H^{r} / H^{r-1}$.
Family of inhomogeneous dilations $\delta_{\lambda}=\operatorname{Diag}\left(\lambda^{1}, \cdots, \lambda^{r}\right)$ replaces scalar multiplication.
$\forall \lambda>0, \delta_{\lambda} \in \operatorname{Aut}\left(T_{H} M\right)$.

Zoom action:

$$
\begin{aligned}
\alpha_{\lambda}:(x, y, t) & \mapsto\left(x, y, \lambda^{-1} t\right) \\
(x, \xi, 0) & \mapsto\left(x, \delta_{\lambda}(\xi), 0\right)
\end{aligned}
$$

$\alpha_{\lambda} \in \operatorname{Aut}\left(\mathbb{T}_{H}^{+} M\right), \lambda>0$.

Zoom action:

$$
\begin{aligned}
\alpha_{\lambda}:(x, y, t) & \mapsto\left(x, y, \lambda^{-1} t\right) \\
(x, \xi, 0) & \mapsto\left(x, \delta_{\lambda}(\xi), 0\right)
\end{aligned}
$$

$\alpha_{\lambda} \in \operatorname{Aut}\left(\mathbb{T}_{H}^{+} M\right), \lambda>0$.
Define $C_{0}^{*}\left(\mathbb{T}_{H}^{+} M\right)$ as the pre-image of $C_{0}^{*}\left(T_{H} M\right)$ which is the kernel of the trivial representations in $C^{*}\left(T_{H} M\right)$. The action (by pullback) restricts to $\mathbb{R}_{+}^{*} \curvearrowright C_{0}^{*}\left(\mathbb{T}_{H}^{+} M\right)$.

This time the action $\mathbb{R}_{+}^{*} \curvearrowright C_{0}^{*}\left(T_{H} M\right)$ is complicated. The action $\mathbb{R} \curvearrowright \Sigma\left(T_{H} M\right)$ is non trivial.

This time the action $\mathbb{R}_{+}^{*} \curvearrowright C_{0}^{*}\left(T_{H} M\right)$ is complicated. The action $\mathbb{R} \curvearrowright \Sigma\left(T_{H} M\right)$ is non trivial.
Goal: find an isomorphism $\Sigma\left(T_{H} M\right) \rtimes \mathbb{R} \cong C_{0}^{*}\left(T_{H} M\right)$ equivariant for the \mathbb{R}_{+}^{*}-actions

This time the action $\mathbb{R}_{+}^{*} \curvearrowright C_{0}^{*}\left(T_{H} M\right)$ is complicated. The action $\mathbb{R} \curvearrowright \Sigma\left(T_{H} M\right)$ is non trivial.
Goal: find an isomorphism $\Sigma\left(T_{H} M\right) \rtimes \mathbb{R} \cong C_{0}^{*}\left(T_{H} M\right)$ equivariant for the \mathbb{R}_{+}^{*}-actions

- Realize elements of $\Sigma\left(T_{H} M\right)$ as multipliers of $C_{0}^{*}\left(T_{H} M\right)$

This time the action $\mathbb{R}_{+}^{*} \curvearrowright C_{0}^{*}\left(T_{H} M\right)$ is complicated. The action $\mathbb{R} \curvearrowright \Sigma\left(T_{H} M\right)$ is non trivial.
Goal: find an isomorphism $\Sigma\left(T_{H} M\right) \rtimes \mathbb{R} \cong C_{0}^{*}\left(T_{H} M\right)$ equivariant for the \mathbb{R}_{+}^{*}-actions

- Realize elements of $\Sigma\left(T_{H} M\right)$ as multipliers of $C_{0}^{*}\left(T_{H} M\right)$
- Define the appropriate \mathbb{R}-action

This time the action $\mathbb{R}_{+}^{*} \curvearrowright C_{0}^{*}\left(T_{H} M\right)$ is complicated. The action $\mathbb{R} \curvearrowright \Sigma\left(T_{H} M\right)$ is non trivial.
Goal: find an isomorphism $\Sigma\left(T_{H} M\right) \rtimes \mathbb{R} \cong C_{0}^{*}\left(T_{H} M\right)$ equivariant for the \mathbb{R}_{+}^{*}-actions

- Realize elements of $\Sigma\left(T_{H} M\right)$ as multipliers of $C_{0}^{*}\left(T_{H} M\right)$
- Define the appropriate \mathbb{R}-action
- Show isomorphism
$\pi: G \rightarrow M$ bundle of nilpotent Lie groups over a compact base.

$$
\begin{aligned}
& \mathfrak{g}=\bigoplus_{i=1}^{r} \mathfrak{g}_{i} \text { with }\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j} . \\
& \mathcal{D}^{\prime}\left(G, \Omega^{1 / 2}\right)=\mathcal{C}_{c}^{\infty}\left(G, \Omega^{-1 / 2} \otimes \Omega^{1}(T G)\right)^{\prime}
\end{aligned}
$$

Definition

A symbol of order m is a distribution $\sigma \in \mathcal{D}^{\prime}\left(G, \Omega^{1 / 2}\right)$ which is transversal to π, has proper support and is quasi-homogeneous of degree m w.r.t δ, i.e.

$$
\forall \lambda>0, \delta_{\lambda *} \sigma-\lambda^{m} \sigma \in \mathcal{C}_{c}^{\infty}\left(G, \Omega^{1 / 2}\right)
$$

Denote $S^{m}(G)$ the space of such symbols and $\Sigma^{m}(G)=S^{m}(G) / \mathcal{C}_{c}^{\infty}\left(G, \Omega^{1 / 2}\right)$ the set of principal symbols.

Convolution of symbols gives composition maps $S^{m}(G) \times S^{\ell}(G) \rightarrow S^{m+\ell}(G)$.

Symbols act by convolution on $\mathcal{C}^{\infty}\left(G, \Omega^{1 / 2}\right)$.
If $\Re(m) \leq 0$, the operators extent to multipliers of $C^{*}(G)$ and if $\Re(m)<0$ they extend to elements of $C^{*}(G)$. Denote by $S^{*}(G)$ the C^{*}-closure of $S^{0}(G)$ inside $M\left(C^{*}(G)\right)$ and $\Sigma(G)=S^{*}(G) / C^{*}(G)$, the later has $\Sigma^{0}(G)$ as a dense subalgebra.

Lemma (Taylor)

Let $m \in \mathbb{C}, u \in S^{m}(G)$. Then there exists a unique smooth function $v \in \mathcal{C}^{\infty}\left(\mathfrak{g}^{*} \backslash 0\right)$ such that:

- v is homogeneous of degree $m: \forall \lambda>0, v \circ{ }^{t} \delta_{\lambda}=\lambda^{s} v$
- if $\chi \in \mathcal{C}_{c}^{\infty}\left(\mathfrak{g}^{*}\right)$ is equal to 1 on a neighborhood of the zero section then $\hat{u}-(1-\chi) v \in \mathscr{S}\left(\mathfrak{g}^{*}\right)$.

Corollary

If $m>-n=-\sum_{i \geq 1} i \operatorname{dim}\left(\mathfrak{g}_{i}\right)$ then

$$
\Sigma^{m}(G) \cong \mathcal{K}^{m}(G)=\left\{\sigma \in \mathscr{S}^{\prime}\left(G, \Omega^{1 / 2}\right) / \forall \lambda>0, \delta_{\lambda *} \sigma=\lambda^{m} \sigma\right\}
$$

If $m \leq 0$ convolution by elements of $\mathcal{K}^{m}(G)$ extend to multipliers of $C_{0}^{*}(G)$. The resulting map $\Sigma^{0}(G) \rightarrow M\left(C_{0}^{*}(G)\right)$ extends to $\Sigma(G)$.

If $m \leq 0$ convolution by elements of $\mathcal{K}^{m}(G)$ extend to multipliers of $C_{0}^{*}(G)$. The resulting map $\Sigma^{0}(G) \rightarrow M\left(C_{0}^{*}(G)\right)$ extends to $\Sigma(G)$.

Let $D \in \Sigma^{r}(G)$ be a positive Rockland differential operator. One can define a symbol $D^{\mathrm{i} t / r} \in \Sigma^{\mathrm{it}}(G)$ (Dave, Haller). Define $\beta(t)=\operatorname{Ad}\left(D^{-\mathrm{i} t / r}\right)$ then $\beta(t) \in \operatorname{Aut}\left(C_{0}^{*}(G)\right)$. Taylor's lemma also realizes $D^{i t / r}$ as a unitary multiplier of $C_{0}^{*}(G)$ and we have the duality relation: $\delta_{\lambda}^{*} D^{-i t / r}=\lambda^{i t} D^{-i t / r}$.

If $m \leq 0$ convolution by elements of $\mathcal{K}^{m}(G)$ extend to multipliers of $C_{0}^{*}(G)$. The resulting map $\Sigma^{0}(G) \rightarrow M\left(C_{0}^{*}(G)\right)$ extends to $\Sigma(G)$.

Let $D \in \Sigma^{r}(G)$ be a positive Rockland differential operator. One can define a symbol $D^{\mathrm{it} / r} \in \Sigma^{\mathrm{it}}(G)$ (Dave, Haller). Define $\beta(t)=\operatorname{Ad}\left(D^{-\mathrm{i} t / r}\right)$ then $\beta(t) \in \operatorname{Aut}\left(C_{0}^{*}(G)\right)$. Taylor's lemma also realizes $D^{i t / r}$ as a unitary multiplier of $C_{0}^{*}(G)$ and we have the duality relation: $\delta_{\lambda}^{*} D^{-i t / r}=\lambda^{i t} D^{-i t / r}$.

We have thus constructed a map $\Sigma(G) \rtimes_{\beta} \mathbb{R} \rightarrow C_{0}^{*}(G)$.

Both algebras $\Sigma(G)$ and $C_{0}^{*}(G)$ are continuous fields of
C^{*}-algebras over M, the previous map preserves this structure. We can then reduce to the case of a single graded Lie group.

Theorem (Fermanian-Kammerer, Fischer)

Let G be a graded Lie group. For $\pi \in \hat{G} \backslash\{1\}$ denote by $[\pi]$ its class in $(\hat{G} \backslash\{1\}) / \mathbb{R}_{+}^{*}$. For every $\pi \in \hat{G} \backslash\{1\}$, we have $\pi \circ \varphi \in \widehat{\Sigma(G)}$ where $\varphi: \Sigma(G) \rightarrow M\left(C_{0}^{*}(G)\right)$ is the map constructed previously. The following map is a homeomorphism:

$$
\begin{aligned}
(\hat{G} \backslash\{1\}) & \mathbb{R}_{+}^{*}
\end{aligned} \rightarrow \widehat{\Sigma(G)} .
$$

Using Kirillov's theory ($\hat{G} \cong \mathfrak{g}^{*} / G$) and Pedersen's fine stratification of the orbits we obtain the following decomposition of the spectrum:

Theorem (Pedersen)

There exists a filtration $\emptyset=V_{0} \subset V_{1} \subset \cdots \subset V_{d}=\hat{G} \backslash\{0\}$ by open subsets such that the each $\Lambda_{i}=V_{i} \backslash V_{i-1}$ is Haussdorff, \mathbb{R}_{+}^{*}-invariant and the action $\mathbb{R}_{+}^{*} \curvearrowright \Lambda_{i}$ is free and proper. In particular the sets $\Lambda_{i} / \mathbb{R}_{+}^{*}$ are Haussdorff.
Moreover (Lipsman, Rosenberg): $\forall i, \exists n \in \mathbb{N}$ s.t. every $\pi \in \Lambda_{i}$ may be realized on the same Hilbert space $L^{2}\left(\mathbb{R}^{n}\right)$, smooth vectors are the Schwartz functions $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and elements of \mathfrak{g} are differential operators with polynomial coefficients. These coefficients have a (non-singular) rational dependence when π varies.

Using Pedersen's stratification we obtain decompositions of $C_{0}^{*}(G)$ and $\Sigma(G)$:

$$
\begin{array}{r}
\{0\}=J_{0} \triangleleft J_{1} \triangleleft \cdots \triangleleft J_{d}=C_{0}^{*}(G) \\
\{0\}=\Sigma_{0} \triangleleft \Sigma_{1} \triangleleft \cdots \triangleleft \Sigma_{d}=\Sigma(G)
\end{array}
$$

with $J_{i} J_{i-1} \cong \mathcal{C}_{0}\left(\Lambda_{i}, \mathcal{K}_{i}\right)$ and $\Sigma_{i / \Sigma_{i-1}}$ is a continuous field of C^{*}-algebras over $\Lambda_{i} / \mathbb{R}_{+}^{*}$.

Using Pedersen's stratification we obtain decompositions of $C_{0}^{*}(G)$ and $\Sigma(G)$:

$$
\begin{array}{r}
\{0\}=J_{0} \triangleleft J_{1} \triangleleft \cdots \triangleleft J_{d}=C_{0}^{*}(G) \\
\{0\}=\Sigma_{0} \triangleleft \Sigma_{1} \triangleleft \cdots \triangleleft \Sigma_{d}=\Sigma(G)
\end{array}
$$

with $J_{i} J_{i-1} \cong \mathcal{C}_{0}\left(\Lambda_{i}, \mathcal{K}_{i}\right)$ and $\Sigma_{i} \Sigma_{i-1}$ is a continuous field of C^{*}-algebras over $\Lambda_{i} / \mathbb{R}_{+}^{*}$.
β preserves each component, we get maps

$$
\left(\Sigma_{i} / \Sigma_{i-1}\right) \rtimes \mathbb{R} \rightarrow J_{i} / J_{i-1} .
$$

Example: $G=H_{3}$ the Heisenberg group. Its Lie algebra is generated by X, Y, Z with $[X, Y]=Z . \Lambda_{1} \cong \mathbb{R}^{*}, \Lambda_{2} \cong \mathbb{R}^{2} \backslash\{0\}$.

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{C}_{0}\left(\mathbb{R}^{*}, \mathcal{K}\right) \rightarrow \mathcal{C}_{0}^{*}\left(H_{3}\right) \longrightarrow \mathcal{C}_{0}\left(\mathbb{R}^{2} \backslash\{0\}\right) \longrightarrow 0 \\
& 0 \longrightarrow \mathcal{K} \oplus \mathcal{K} \rightarrow \Sigma\left(H_{3}\right) \longrightarrow \mathcal{C}_{0}\left(\mathbb{S}^{1}\right) \longrightarrow 0
\end{aligned}
$$

The second line is the well known Epstein-Melrose decomposition of symbols in the Heisenberg calculus.

Lemma

The action of β on each $\Sigma_{i} \Sigma_{i-1}$ is trivial (i.e. inner)

Lemma

The action of β on each $\Sigma_{i} \Sigma_{i-1}$ is trivial (i.e. inner)
Denote by $A_{\lambda}=\operatorname{im}\left(\pi_{\lambda}\right)$ the fiber of $\Sigma(G)$ at $[\lambda] \in \Lambda_{i} / \mathbb{R}_{+}^{*}$. We now have to show that $A_{\lambda}=\mathcal{K}\left(\mathcal{H}_{\pi_{\lambda}}\right)$:

- A_{λ} contains $\mathcal{K}\left(\mathcal{H}_{\lambda}\right)$
- A_{λ} is a simple algebra

Theorem (Ewert ('20) ; C. ('23))

Let $G \rightarrow M$ be a bundle of graded Lie groups then $\Sigma(G) \rtimes \mathbb{R}$ and $C_{0}^{*}(G)$ are isomorphic.

Corollary (C. ('23))

Let G be a graded Lie group. Let
$\emptyset=V_{0} \subset V_{1} \subset \cdots \subset V_{d}=\hat{G} \backslash\{0\}$ be a Pedersen stratification and $\{0\}=\Sigma_{0} \triangleleft \Sigma_{1} \triangleleft \cdots \triangleleft \Sigma_{r}=\Sigma(G)$ be the corresponding decomposition of the symbol algebra. Then:

$$
\forall i \geq 1, \Sigma_{i} \Sigma_{i-1} \cong \mathcal{C}\left(\Lambda_{i} / \mathbb{R}_{+}^{*}, \mathcal{K}_{i}\right)
$$

Thank you for your attention!

