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Motivation

Closed manifold
Hörmander ΨDOs
Atiyah-Singer index theorem

Rn

Shubin ΨDOs
index formulas by Fedosov,
Hörmander, Elliott–Natsume–Nest

⇝

⇝

Closed filtered manifold
calculus by van Erp–Yuncken
index theorems by Baum–van Erp,
Mohsen, Goffeng-Kuzmin, . . .

G graded Lie group
?

Questions:

(1) Can one formulate the Shubin calculus in terms of a tangent groupoid?
(2) Is there a filtered Shubin calculus?
(3) When are operators elliptic in this calculus and how to determine their

index?
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Shubin calculus

Definition
A function a ∈ C∞(Rn × Rn) is a Shubin symbol of order m if

∀γ, δ ∈ Nn
0 ∃Cγ,δ > 0: |∂γ

x ∂
δ
ξ a(x , ξ)| ≤ Cγ,δ(1 + |x | + |ξ|)m−|γ|−|δ|.

Example (Differential operators with polynomial coefficients)
a(x , ξ) =

∑
|α|+|β|≤m

cα,βxα(iξ)β ⇝ Op(a) =
∑

|α|+|β|≤m

cα,βxα∂β

• consider classical symbols: homogeneous expansion with respect to
the scalings λ · (x , ξ) = (λx , λξ) for λ > 0,

• principal symbol is a m-homogeneous function on R2n \ {0},
• denote Ψm

S = {Op(a) | a classical Shubin symbol of order m},
• the principal symbol map induces short exact sequences

0 → Ψm−1
S → Ψm

S
σm→ C∞(S2n−1) → 0.
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Ellipticity in the Shubin calculus

Definition
A classical Shubin pseudodifferential operator A is elliptic if its principal
symbol σm(A) ∈ C∞(S2n−1) is invertible.

• denote by K∞ integral operators with kernel in S(Rn × Rn),
• A ∈ Ψm

S elliptic ⇒ there is a parametrix B ∈ Ψ−m
S such that

AB − 1 ∈ K∞ and BA − 1 ∈ K∞,
• elliptic Shubin operators are Fredholm.

Examples

• on Rn: harmonic oscillator −∆ + |x |2 ∈ Ψ2
S (principal symbol |ξ|2 + |x |2),

• on R: creation/annihilation operator x ± ∂x ∈ Ψ1
S (principal symbol x ± iξ).
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Graded Lie groups

Definition
A graded Lie group is a simply connected Lie group G whose Lie algebra g
can be written as

g =
r⊕

j=1
gj such that [gi , gj ] ⊆ gi+j .

• in particular, graded Lie groups are nilpotent,
• in the following identify X ∈ g with the corresponding left-invariant

differential operator on G ,
• define the order of X ∈ gj to be j .

Example (Heisenberg group H with Lie algebra h)
Let h1 be generated by X ,Y , h2 by Z = [X ,Y ].
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Dilations

• the grading induces a dilation action δ : R>0 ↷ g defined by
δλ(X ) = λjX for X ∈ gj ,

• integrates to δ : R>0 ↷ G ,
• X (f ◦ δλ) = λj(Xf ) ◦ δλ for X ∈ gj and f ∈ C∞(G).

Definition
A function f : G \ {0} → C is m-homogeneous if f ◦ δλ = λmf for all λ > 0.

⇝ new notion of order for the polynomials on G .

Example (Heisenberg group)

• X ,Y have order 1, Z has order 2,
• the coordinate functions x , y have order 1, z order 2.
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Shubin filtration

• Choose a basis X1, . . . ,Xn of g s.t.
> X1, . . . , Xdim g1 is a basis of g1,
> Xdim g1+1, . . . , Xdim g1+dim g2 is a basis of g2,
> . . .

• the weights q1, . . . , qn ∈ N are defined by Xi ∈ gqi ,
• identify Rn ∼=−→ G via (x1, . . . , xn) 7→ exp

(∑n
i=1 xiXi

)
,

• for a multi-index α ∈ Nn
0, write [α] = α1q1 + . . . + αnqn,

• homogeneous degree of X α or xα is [α].

Shubin filtration of differential operators with polynomial coefficients on G
For m ∈ N0, let

Am =

 ∑
[α]+[β]≤m

cα,βxαX β | cα,β ∈ C

 ⊆ Am+1 ⊆ . . .
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Rockland condition

Definition
Let P be a left-invariant differential operator on a graded Lie group G .
Then P satisfies the Rockland condition if for every π ∈ Ĝ \ {πtriv} the
operator dπ(P) is injective on H∞

π .

Theorem (Helffer–Nourrigat, Christ–Geller–G lowacki–Polin, Dave–Haller,. . . )

Let M be a filtered manifold and P ∈ Ψm
H (M). If all model operators

σ(P)x satisfy the Rockland condition on the osculating groups Gx , then P
is hypoelliptic.

Shubin filtration: obtain an isomorphism
∞⊕

m=0
Am/Am−1 → U(g∗) ⊗ U(g) = U(g∗ ⊕ g)

induced by
∑

[α]+[β]≤m cαβxαX β 7→
∑

[α]+[β]=m cαβ(−i∂x )αX β

⇝ Rockland condition on Rn × G
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Example: Heisenberg group

Representations of H
Ĥ consists of

• characters χa,b on H = C for
(a, b) ∈ R2:
X 7→ ia, Y 7→ ib, Z 7→ 0,

• Schrödinger representations πλ

on H = L2(R) for λ ∈ R∗:
X 7→

√
|λ|∂u, Y 7→ ±i

√
|λ|u,

Z 7→ iλ1.

⇝ can check which operators of the form −X 2 − Y 2 + αZ + p(x , y , z)
for α ∈ C and a polynomial potential p satisfy the Rockland condition.
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Shubin tangent groupoid and zoom action

Consider first G = Rn.

Hörmander classes
• homogeneity of the symbols wrt

λ · (x , ξ) = (x , λξ),
• tangent groupoid

TRn = (Rn × R) ⋊ Rn for
(x , t) · v = (x + tv , t),

• at t = 0: TRn,
• for t ̸= 0: isomorphic to the pair

groupoid Rn × Rn via
(x , t, v) 7→ (x , x + tv),

• zoom action of R>0
λ · (x , t, v) = (x , t

λ
, λv).

Shubin classes
• homogeneity of the symbols wrt

λ · (x , ξ) = (λx , λξ),
• Shubin tangent groupoid

TSRn = (Rn × R) ⋊ Rn for
(x , t) · v = (x + t2v , t),

• at t = 0: TRn,
• for t ̸= 0: isomorphic to the pair

groupoid Rn × Rn via
(x , t, v) 7→ (x , x + t2v),

• Shubin zoom action of R>0
λ · (x , t, v) = (λ−1x , t

λ
, λv).
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Shubin tangent groupoid and zoom action

Similary, we define for a graded Lie group G using the dilations δ:
• a Shubin tangent groupoid TSG = (G × R) ⋊ G for

(x , t) · v = (x · δt2 (v), t),
• a Shubin zoom action αλ(x , t, v) = (δλ−1 (x), t

λ , δλ(v)).

Remark
More generally, we can consider two commuting dilations, one to define the
order of left-invariant differential operators, the other for the order of
polynomials.

Example
Rn with different weights ⇝ anisotropic calculus (Boggiatto–Nicola)
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Shubin pseudo-differential calculus

Given this tangent groupoid and zoom action, one can follow the approach
of Debord–Skandalis and van Erp–Yuncken to define a corresponding
pseudodifferential calculus.

Definition
An operator P : S(G) → S(G) is a Shubin type operator of order m
(P ∈ Ψm

S (G)) if there is a P ∈ K(TSG) such that Op(P1) = P and
αλ∗(P) − λmP ∈ S(TSG) for all λ > 0.

Here, K(TSG) denotes a certain space of fibred distributions.

Example (Differential operator with polynomial coefficients)
P =

∑
[α]+[β]≤m

cα,βxαX β ∈ Ψm
S (G): it extends to the zoom-homogeneous P

with Pt =
∑

[α]+[β]≤m

tm−[α]−[β]cα,βxαX β
v .
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Properties of the calculus

Analogously to the results of van Erp–Yuncken for filtered manifolds one
can show

• there is a well-defined principal cosymbol:
σm(P) = [P0] ∈ K0(THG)/S(THG)

for any essentially homogeneous extension P,
• the principal symbol map induces short exact sequences,
• call P Shubin H-elliptic if σm(P) is invertible,
• Ψk

S(G)Ψl
S(G) ⊆ Ψk+l

S (G),
• ∩m∈ZΨm

S (G) = K∞.

Remark
The C∗-completion of the order zero extension can also be obtained by a
generalized fixed point algebra approach. In particular, operators of order 0
are bounded on L2(G) and of negative order are compact.
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Ellipticity and Rockland condition
Using the result of Christ-Geller-G lowacki-Polin:
Theorem
P ∈ Ψm

S (G) is Shubin H-elliptic if and only if (x , π)(σm(P)) and
(x , π)(σm(Pt)) are injective on H∞

π for all (x , π) ∈ G × Ĝ \ {(0, πtriv)}
(Rockland condition).

Example (Analogue of harmonic oscillator)
Fix a common multiple q of the weights q1, . . . , qn ∈ N. Then

P =
n∑

j=1
(−1)

q
qj X

2q
qj

j +
n∑

j=1
x

2q
qj

j = R + ∥x∥2q ∈ Ψ2q
S (G)

satisfies the Rockland condition.

One can define a Sobolev scale Hs for the Shubin calculus following
Dave–Haller for filtered manifolds.
Theorem
Let P ∈ Ψm

S (G) be elliptic. Then P : Hs → Hs−m is Fredholm for s ∈ R.
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How to compute the index?

For the Shubin calculus on Rn:

Theorem (Elliott–Natsume–Nest)
Let Op(a) ∈ Ψm

S (Rn) be elliptic of positive order. Then

ind(Op(a)) = 1
(2πi)nn!

∫
T ∗Rn

tr(pa(dpa)2n),

where

pa =
(

(1 + a∗a)−1 (1 + a∗a)−1a∗

a(1 + a∗a)−1 a(1 + a∗a)−1a∗

)
−

(
0 0
0 1

)
.
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Idea of the proof for G = Rn

• connect Op(a) to its symbol a through the tangent groupoid. Let
at(x , ξ) = a(x , t2ξ),

• denote for an elliptic operator T

pT =
(

(1 + T ∗T )−1 (1 + T ∗T )−1T ∗

T (1 + T ∗T )−1 T (1 + T ∗T )−1T ∗

)
−

(
0 0
0 1

)
,

• then the following defines a continuous section of C∗(TSRn)

t 7→

{
pOp(at ) t ̸= 0
pa t = 0,

• use a cyclic cocycle ω such that ind(Op(a)) = ⟨pOp(a), ω⟩ and
lim
t→0

⟨pOp(at ), ω⟩ exists.
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The cyclic 2n-cocycle for G = Rn

• for j = 1, . . . , n define derivations of K∞ by δ2j−1(T ) = [∂xj ,T ] and
δ2j(T ) = [xj ,T ],

• ω(T0, . . . ,T2n) = (−1)n

n!
∑

σ∈S2n

sgn(σ) Tr(T0δσ(1)(T1) . . . δσ(2n)(T2n)),

• denote by ρt(f ) for t ̸= 0 and f ∈ S(TSRn) their representations as
operators on L2(Rn)

ρt(f )ψ(x) = (2π)−nt−2n
∫

f (x , t, y−x
t2 )ψ(y) dy ,

• then [∂xj , ρt(f )] = ρt(∂xj f ) and [xj , ρt(f )] = ρt(−t2vj f ).
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The cyclic 2n-cocycle for G = Rn

For f0, . . . , f2n ∈ S(G × G)

Tr(ρt(f0)δ1(ρt(f1)) . . . δ2n(ρt(f2n)))
= (−t2)n Tr(ρt(f0 ∗t ∂x1 f1 ∗t v1f2 ∗t . . . ∗t vnf2n))

= (−2π)n
∫
Rn

(f0 ∗t ∂x1 f1 ∗t v1f2 ∗t . . . ∗t vnf2n)(x , 0) dx

→
t→0

(−1)n

(2πi)n

∫
T ∗Rn

f̂0∂x1 f̂1∂ξ1 f̂2 . . . ∂ξn f̂2n dx dξ

Consequently, the limit of ω(ρt(f0), . . . , ρt(f2n)) as t → 0 gives the result.
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Constructing a cocycle for a graded Lie group G

As G is graded, G ∼= ((R⋊ R) ⋊ . . .) ⋊R, similarly also TSG and their
corresponding Schwartz convolution algebras.

Theorem (Elliott–Natsume–Nest)
If A is a Fréchet algebra with a smooth R-action, then there is an
(explicitly constructed) isomorphism #: HCk

per(A) → HCk+1
per (A ⋊R).

It is compatible with the Connes–Thom isomorphism in K-theory.

We use this to get a cyclic 2n-cocycle ωt on S(G) ⋊t G for all t such that
• the pairing with the graph projection at t = 1 gives the index,
• it recovers the considered cocycle for G = Rn.
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Theorem (E–Nest–Schmitt)
Let P ∈ Ψm

S (G) be of positive order and Shubin-H-elliptic. Then
ind(P) = (ω0# tr)(pP0 , . . . , pP0 ).

Example (Heisenberg group)
One computes for fi ∈ S(G × G)

ω0(f0, . . . , f6) =
∑
σ∈S6

sgn(σ)
∫

G
f0 ∗ Dσ(1)f1 ∗ . . . ∗ Dσ(6)f6(x , 0) dx

+ extra terms
where D1 = ∂x1 ,D2 = v1,D3 = ∂x2 ,D4 = v2,D5 = ∂x3 ,D6 = v3.
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Heisenberg group

ω0(f0, . . . , f6) =
∑

i
ci

∫
Rn

(f0 ∗ Di
1f1 ∗ · · · ∗ Di

6f6)(x , 0) dx ,

where ci = (−1)a+b+csgn(σ)di with a, b, c the positions of the elements in
the top row, σ the sign of the permutation in the top row, and

f1 f2 f3 f4 f5 f6 di
∂x2 ∂x1 ∂x3

v3 v1 v2
sign of permutation in bottom row

∂x1 ∂x3 ∂x2

v2 v1v1 v2
(−1)k+ℓ+1/2; k, ℓ indices of left, right

element in bottom row

∂x2 ∂x3 ∂x1

v1 v2 v2 v1
(−1)k+ℓ/2; k, ℓ index of v1 in bottom row

(k, ℓ) ̸= (1, 2), (3, 4)

2nd or 3rd element contained in column with 2 entries
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Rewriting the cocycle using Fourier transform

Plancherel Theorem
For f ∈ S(G) and the Plancherel measure on Ĝ

f (0) =
∫

Ĝ
Tr

(
f̂ (π)

)
dµ(π).

• denote by ∆vi f̂ (π) = v̂i · f (π) (difference operators),
• the Plancherel measure on Ĥ is supported within the Schrödinger

representations πλ for λ ∈ R \ {0},
• using this, the cocycle can be rewritten, for example,∫

G
f0 ∗ ∂x1 f1 ∗ . . . ∗ v3f6(x , 0) dx

= (2π)−4
∫

H×R\{0}
sgn(λ) Tr(f̂0(x)(πλ)∂x1 f̂1(x)(πλ) . . .∆v3 f̂6(x)(πλ)) dx dλ.
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Thank you!
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