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Dirac operator: geometric set-up

I We consider two geometric situations

I (1): a smooth compact manifold without boundary M and a
Galois coverings Γ→ M̃ → M.

I We then consider D̃, a Γ-equivariant operator, lift of D on M

I (2): we also consider a semisimple Lie group G and a
G -proper manifold X such that X/G is compact

I in this context we consider DX , an equivariant Dirac operator

I We are interested in K-theory invariants associated to these
operators and, above all, to ways to extract numeric
invariants out of these K-theory invariants.

I We want geometric applications.



Old and new invariants of Dirac operator

I We begin with M and Γ→ M̃ → M.

I One way to organize relavant K-theory invariants associated to
D and D̃ is through the Higson-Roe analytic surgery sequence.

I This allows to recover known invariants, such as
- the fundamental class [D] ∈ K∗(M)
- the index class IndΓ(D̃) ∈ K∗(C

∗
r Γ)

but also to define a new invariant:
- the rho class ρ(D̃) of an invertible Dirac operator .



The Higson-Roe analytic surgery sequence

• The Higson-Roe analytic surgery sequence is a K-theory
sequence that can be written as follows:

· · · → K∗+1(C ∗red Γ)→ SΓ
∗(M̃)→ K∗(M)→ K∗(C

∗
red Γ)→ · · ·

• The group SΓ
∗(M̃) is the analytic surgery group

• SΓ
∗(M̃) := K∗+1(D∗(M̃)Γ)

• D∗(M̃)Γ is the norm closure of D∗c (M̃)Γ ⊂ B(L2(M̃))

• D∗c (M̃)Γ is the algebra of Γ-equivariant bounded operators on L2

that are of finite propagation and pseudolocal (i.e. [f ,T ] is
compact for any f ∈ C∞c (M̃)).

• We are short here because we shall see a different incarnation of
this sequence in a moment.



The rho class of an invertible operator

• As anticipated, the group K∗(C
∗
red Γ) is the home of the Index

class IndΓ(D̃) and the group K∗(M) is the home of the
fundamental class [D]

• the analytic surgery group SΓ
∗(M̃) = K∗+1(D∗(M̃)Γ) is the home

of the rho-class ρ(D̃) of an L2-invertible Dirac operator D̃

• we shall be happy with the case M odd dimensional. Then

ρ(D̃) := [Π>(D̃)] ∈ SΓ
1(M̃) = K0(D∗(M̃)Γ)



Mapping geometric surgery to analytic surgery

I why is the Higson-Roe analytic surgery sequence interesting
and why is the word surgery used ?

I Consider the surgery exact sequence in topology (Browder,
Novikov, Sullivan, Wall) associated to Mn orientable:
(?) Ln+1(ZΓ) 99K S(M)→ N (M)→ Ln(ZΓ)

I Higson and Roe proved that one can map (?) to the
Higson-Roe analytic surgery sequence (2005)

I consider the Stolz’ sequence for positive scalar curvature
metrics for Z with π1(Z ) = Γ (e.g.: Z = M, or Z = BΓ):
· · · → Ωspin

n+1(Z )→ Rspin
n+1 (Z )→ Posspin

n (Z )→ Ωspin
n (Z )→ · · ·

I P. and Schick proved that one can map the Stolz’ surgery
sequence to the Higson-Roe surgery sequence (2014)

I P. and Albin proved that one can map the Browder-Quinn
surgery sequence for a Witt pseudomanifold to the
Higson-Roe surgery sequence (2022)



Goals

I We want to extract numeric invariants out of these K-theory
classes

I for the fundamental class [D] ∈ K∗(M) we have the
(homology) Chern character Ch∗ : K∗(M)→ H∗(M,Q) and
we can pair with cohomology to obtain numbers

I for the index class IndΓ(D̃) ∈ K∗(C
∗
r Γ) we have the seminal

work of Connes and Moscovici

I we shall recall the work of Connes and Moscovici in the next
slides

I the real problem is how to extract numeric invariants out of
the rho class ρ(D̃) ∈ SΓ

∗(M̃)



Higher indices: variations on Connes-Moscovici

I we assume that M is even dimensional

I given [ϕ] ∈ Hk (Γ) we have a cyclic class [τΓ
ϕ] ∈ HC k (CΓ)

given by the cyclic cocycle:
τΓ
ϕ(g0, g1, . . . , gk ) = 0 if g0 · · · gk 6= e

τΓ
ϕ(g0, g1, . . . , gk ) = ϕ(g0, g0g1, . . . , g0 · · · gk ) if g0 · · · gk = e

I by definition [τΓ
ϕ] ∈ HC ∗(CΓ, 〈e〉)

I in fact H∗(Γ) 3 [ϕ]→ [τΓ
ϕ] ∈ HC ∗(CΓ, 〈e〉) is an isomorphism

I recall that HC ∗(CΓ) decomposes as the direct product of
HC ∗(CΓ, 〈x〉)

I here HC ∗(CΓ, 〈x〉) is defined requiring τ(g0, g1, . . . , gk ) = 0 if
g0 · · · gk /∈ 〈x〉

I Burghelea’s Theorem: HC ∗(CΓ, 〈x〉) is explicitly computable



Variations on Connes-Moscovici (cont)

I there exists a smooth (:= dense holomorphically closed)
subalgebra BΓ of C ∗r Γ defined by Connes and Moscovici

I there exists a smooth index class IndΓ
∞(D̃) ∈ K∗(BΓ)

I we can consider H∗(BΓ), the non-commutative de Rham
homology of BΓ

I there exists a Chern character ChΓ : K0(BΓ)→ H2∗(BΓ)
defined à la Chern-Weil

I there is natural pairing 〈 , 〉 : H∗(BΓ)× HC ∗(BΓ)→ C
I unfortunately we know very little about HC ∗(BΓ)

I instead we would like to use HC ∗(CΓ, 〈e〉) = H∗(Γ)

I this is indeed possible and achieved in two steps if, in
addition, Γ is Gromov hyperbolic



Gromov hyperbolic groups

We fix a word length L on Γ

Step 1. Thanks to the work of Gromov one can prove
HC ∗(CΓ, 〈e〉)(= H∗(Γ)) is equal to HC ∗pol (CΓ, 〈e〉)(= H∗pol (Γ)), the
(cyclic) cocycles of polynomial growth, if Γ is Gromov hyperbolic

Step 2. Gromov Hyperbolic groups satisfy the Rapid Decay
condition:
H∞L (Γ) := {f ∈ `2(Γ) :

∑
γ |f (γ)|2(1 + L(γ))2k < +∞ ∀k}

endowed with the seminorms νk (f ) := ‖f (1 + L)k‖ is continuously
contained in C ∗r Γ.

Step 1+ Step 2 ⇒ extendability of [τΓ
ϕ] from CΓ to BΓ:

The RD condition implies that H∞L (Γ) is dense and holomorphically
closed in C ∗r Γ and that a cocycle of polynomial growth extends
from CΓ to H∞L (Γ); but one proves that the seminorms of H∞L (Γ)
are continuous on the algebra BΓ of Connes-Moscovici.

We can define the higher index IndΓ
ϕ(D̃), [ϕ] ∈ HC ∗(CΓ, 〈e〉) and

Connes-Moscovici give a formula for this higher index.



Higher indices of G -proper manifolds: geometric set-up

I G a connected semisimple Lie group (OK also real reductive
Lie group)

I K < G maximal compact subgroup

I (X , h), a cocompact G -proper manifold, dimX even, ∂X = ∅,
with a G -invariant riemannian metric h

I proper: the map G × X → X × X , (g , x)→ (x , gx) is proper

I D, a Z2-graded odd G -equivariant Dirac operator acting on
the sections of a G -equivariant vector bundle E = E+ ⊕ E−



Higher indices on G -proper manifolds: index class

I we consider the Harish-Chandra Schwartz algebra C(G )

I C∞c (G ) ⊂ C(G ) ⊂ C ∗r (G )

I C(G ) is made of functions of ”rapid decay”

I there exists a smooth index class
Ind∞(D) ∈ K∗(C(G )) = K0(C ∗r G )

I we want to extract numbers out of this index class

I there exists a Chern-Connes character with values in
HCeven(C(G ))

I there exists a pairing HCeven(C(G ))× HC even(C(G ))→ C



Cyclic cocycles from group cocycles

I in the discrete case we considered a morphism
H∗(Γ)→ HC ∗(CΓ)

I in the proper case there is a morphism
H∗diff(G ) 3 [ϕ] −→ [τϕ] ∈ HC ∗(C∞c (G ))

I go back to the pairing HCeven(C(G ))× HC even(C(G ))→ C
I we want classes in HC even(C(G )) from our classes

[τϕ] ∈ HC even(C∞c (G )), ϕ ∈ H∗diff(G )

I It is again a problem of extendability, from C∞c (G ) to the
Harish-Chandra algebra C(G ).



Extending cyclic cocycles from C∞c (G ) to C(G )

I We can give again the definition of Rapid Decay, with L the
length function associated to a left-invariant metric on G

I (just substitute sums with integrals )

I if G satisfies the Rapid Decay condition then H∞L (G ) is dense
and holomorphically closed in C ∗r G . Moreover C(G ) is a
subalgebra of H∞L (G ).

I we would like to proceed as in Connes-Moscovici and extend
cyclic cocycles from C∞c (G ) to H∞L (G )

I we need the analogue of the result on H∗(Γ) for Γ Gromov
hyperbolic (that is, H∗(Γ) = H∗pol (Γ)) .

I this is the content of the next result, which is a result in
riemannian geometry



Extending cyclic cocycles from C∞c (G ) to C(G ) (cont.)

Theorem
(P-Posthuma (AKT, 2019)) if G/K has nonpositive sectional
curvature then ∀α ∈ H∗diff(G ) ∃ ϕ of polynomial growth such that
α = [ϕ].

Example

G connected semisimple satisfies this condition and satisfies also
the Rapid Decay condition

Consequently for such groups the C ∗-higher index Indϕ(D) is
well-defined for each [ϕ] ∈ H∗diff (G ).

There is an index formula ! (Pflaum-Posthuma-Tang)



Secondary invariants: toward a different description of
Higson-Roe

I let us go back to Galois coverings

I we are heading toward a different description of the
Higson-Roe surgery sequence in order to define numeric
invariants out of the rho class ρ(D̃)

I On M̃ we have
0→ Ψ−1

Γ,c (M̃)→ Ψ0
Γ,c (M̃)

σ−→ C∞(S∗M)→ 0

I define Ψ0
Γ(M̃) := Ψ0

Γ,c (M̃), the C ∗ closure in B(L2)

I define C ∗(M̃)Γ := Ψ−1
Γ,c (M̃), the C ∗ closure in B(L2)

(this is the Roe algebra)

I the C ∗ closure of the sequence in B(L2) is:
0→ C ∗(X̃ )Γ → Ψ0

Γ(X̃ )
σ−→ C (S∗X )→ 0



Zenobi’s description of the Higson-Roe surgery sequence

Recall the short exact sequence
0→ C ∗(M̃)→ Ψ0

Γ(M̃)
σ−→ C (S∗M)→ 0

There are natural homomorphisms of algebras

I m : C (M)→ Ψ0
Γ(M̃) (lift and multiply)

I π∗ : C (M)→ C (S∗M) with π : S∗M → M the natural
projection.

Theorem (Zenobi, 2018) There is an isomorphism between the
Higson-Roe sequence and the sequence of relative groups

· · · · · · δ−→ K∗(0 ↪→ C ∗(M̃Γ))→ K∗(C (M)
m−→ Ψ0

Γ(M̃))
σ−→

σ−→ K∗(C (M)
π∗
−→ C (S∗M))

δ−→ · · ·
I in particular SΓ

∗(X̃ ) = K∗(C (X )
m−→ Ψ0

Γ(X̃ ))



Higher rho numbers

I if AΓ is a smooth subalgebra of C ∗r Γ we can define a smooth
subalgebra subalgebra Ψ0

AΓ(M̃) in Ψ0
Γ(M̃)

I then

K∗(C (X )
m−→ Ψ0

Γ(M̃)) = K∗(C (X )
m−→ Ψ0

AΓ(M̃))

I Now we want to extract numbers out of the rho class ρ(D̃) in

K∗(C (X )
m−→ Ψ0

AΓ(M̃))

I These are higher rho numbers.

I using Lott’s superconnection (a noncommutative analogue of
Bismut superconnection) we define a delocalized Chern
character

Chdel
Γ : K∗(C (X )

m−→ Ψ0
AΓ(M̃))→ Hdel

[∗−1](AΓ)



Higher rho numbers: Gromov hyperbolic groups

I Let M be odd dimensional. Assume that D̃ is L2-invertible.

I We have the rho class ρ(D̃) and we’ve defined
Chdel

Γ (ρ(D̃)) ∈ Hdel
ev (AΓ) ⊂ Hev(AΓ)

I We know that H∗(AΓ) embeds in HC∗(AΓ)

I We would like to pair Chdel
Γ (ρ(D̃)) ∈ Hdel

ev (AΓ) with the
delocalized cyclic cohomology groups HC ∗(CΓ, 〈x〉), x 6= e.

I This is an extension problem as for Connes and Moscovici

I Given [τ ] ∈ HC ∗(CΓ, 〈x〉) we would like to extend it to a class
in HC ∗(AΓ) and then use H∗(AΓ)× HC ∗(AΓ)→ C

I this would give a sense to 〈Chdel
Γ (ρ(D̃)), [τ ]〉

I We assume Γ Gromov hyperbolic.



Higher rho numbers: Gromov hyperbolic groups (cont)

Note that this is a difficult problem already for the delocalized
trace associated to 〈x〉, τ〈x〉(

∑
γ aγγ) :=

∑
g∈〈x〉 ag

Theorem
(Puschnigg, 2010) Let Γ be Gromov hyperbolic. There exists a
smooth subalgebra AΓ ⊂ C ∗r Γ s. t. τ〈x〉 extends from CΓ to AΓ.

Theorem
(P-Schick-Zenobi, 2019) Let Γ be Gromov hyperbolic. Then
(1) ∀x ∈ Γ there are isomorphisms

HH∗(CΓ, 〈x〉) = HH∗pol(CΓ, 〈x〉) , HC ∗(CΓ, 〈x〉) = HC ∗pol(CΓ, 〈x〉)

(2) The cyclic cochains of polynomial growth extends to the
Puschnigg’s algebra AΓ inducing an injection
HC ∗(CΓ, 〈x〉)→ HC ∗(AΓ) as a direct summand.

For (1) we build on results of Dan Burghelea and Ralph Meyer.
For (2) we use heavily the work of Michael Puschnigg.



Higher rho numbers: summary

I Summarizing: for a Gromov hyperbolic group we have defined
the higher rho numbers

ρτ (D̃) := 〈Chdel
Γ (ρ(D̃)), τ〉 , τ ∈ HC ∗(CΓ, 〈x〉).

I Example 1: if g is a positive scalar curvature metric and M is
spin, then we have ρτ (g)

I Example 2: if f : X → Y is a oriented homotopy equivalence
and M = X t (−Y ) then we have ρτ (f ) defined via
D̃sign

M + A(f ), with A(f ) the Hilsum-Skandalis perturbation



Simple examples

I There are explicit formulae. For example: if M is odd
dimensional and τ is the delocalized trace τ ≡ τ〈x〉
τ〈x〉(

∑
γ aγγ) :=

∑
g∈〈x〉 ag

then ρτ (D̃) is Lott’s delocalized eta invariant η〈x〉(D̃):

ρτ (D̃) = η〈x〉(D̃) :=

∫ ∞
0

t−1/2Tr〈x〉(D̃ exp(−(tD̃)2))dt

Tr〈x〉(K̃ ) =
∑
γ∈〈x〉

∫
F
trp(K̃ (p, γp))dvol .

I in particular we have
• η〈x〉(g) with M spin and g of PSC
• η〈x〉(f ) if f : X → Y is an oriented homotopy equivalence



Bordism invariance

I If M is closed then Indτ (D̃) = 0 ∀τ ∈ HC ∗(CΓ, 〈x〉), x 6= 0

I if our manifold, W , has a boundary this is not so

I there exists a delocalized higher APS index theorem on a
Galois covering with boundary Γ→ W̃ →W , assuming the
boundary operator invertible (P-Schick):

IndτAPS(D̃W ) = −1
2ρ
τ (D̃∂W )

I this implies that ρτ (g) descends to P+(M), the set of
concordance classes of PSC-metrics

I similarly ρτ (f1) = ρτ (f2) if f1 : N1 → M and f2 : N2 → M are
h-cobordant

I many interesting geometric applications



More higher rho numbers

I In addition to

〈 , 〉 : SΓ
∗(M̃)× HC ∗(CΓ, 〈x〉)→ C

we also define in our paper a pairing

〈 , 〉 : SΓ
∗(M̃)× H∗(M → BΓ)→ C

if Γ satisfies the Rapid Decay condition and H∗(Γ) = H∗pol (Γ)
(for example Gromov hyperbolic groups).

I all of these results in the article Mapping analytic surgery to
homology, higher rho numbers and metrics of positive scalar
curvature (P -Schick- Zenobi), to appear in Memoirs AMS

I related results also by Chen-Wang-Xie-Yu and
Weinberger-Xie-Yu



A glimpse to the G -proper case

I Given g ∈ G a semisimple element we consider the so called
orbital integral trg : if Z := ZG (g) and f ∈ C∞c (G ) then

trg (f ) :=

∫
G/Z

f (xgx−1)d(xZ ) .

I Proposition: trg is a trace and it extends to C(G )

I from trg we define a trace trX
g on Ψ−∞G ,c (X ):

trX
g (k) :=

∫
G/Z

∫
X
c(hgh−1x)tr(hgh−1κ(hg−1h−1x , x))dx d(hZ )

I it extends to ”Harish-Chandra smoothing operators”



Questions
I can we define a delocalized eta invariant ηg (D) using the heat

kernel and trX
g ?

I if C is a smoothing perturbation can we define ηg (D + C ) ?

I in particular, can we define the delocalized eta invariant of a
PSC metric g and of a G-equivariant homot. equivalence f ?

I is there a delocalized APS index theorem ?

I are there higher versions of these results ?

I together with Hessel Posthuma, Yanli Song and Xiang Tang
we give positive answers to these questions

I contributions also by Peter Hochs, Bai-Ling Wang and Hang
Wang

I our work in the preprint Higher orbital integrals, rho numbers
and index theory

I and in the new preprint Perturbed Dirac operators and index
theory on G -proper manifolds (to appear in arxiv)

I all this in the talk of Hessel Posthuma on Friday



T H A N K Y O U !
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