Tangent space in sub-Riemannian geometry and applications

Omar Mohsen, Paris-Saclay university

Mars, 2023

How to connect a differential operator to its representations in the Helffer-Nourrigat set?

∃ >

- How to connect a differential operator to its representations in the Helffer-Nourrigat set?
- Why the Helffer-Nourrigat set?

- How to connect a differential operator to its representations in the Helffer-Nourrigat set?
- Why the Helffer-Nourrigat set?
- What about a topological index formula for the analytic index of *-maximally hypoelliptic differential operators?

- How to connect a differential operator to its representations in the Helffer-Nourrigat set?
- Why the Helffer-Nourrigat set?
- What about a topological index formula for the analytic index of *-maximally hypoelliptic differential operators?
- What about the heat kernel and Weyl asymptotics of the eigenvalues?

Consider the topological space

```
M \times M \times \mathbb{R}_+^{\times} \sqcup TM \times \{0\}.
```

∃ >

Consider the topological space

$$M \times M \times \mathbb{R}_+^{\times} \sqcup TM \times \{0\}.$$

The topology is given by

1 The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology

Consider the topological space

$$M\times M\times \mathbb{R}_+^{\times}\sqcup TM\times \{0\}.$$

The topology is given by

- **①** The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology
- 2 The subset $TM \times \{0\}$ is closed with its usual topology

Consider the topological space

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup TM \times \{0\}.$$

The topology is given by

- **1** The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology
- 2 The subset $TM \times \{0\}$ is closed with its usual topology
- 3 A sequence (or a net) $(y_n, x_n, t_n) \in M \times M \times \mathbb{R}^{\times}_+$ converges to $(x, \xi, 0)$ if

3/26

Consider the topological space

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup TM \times \{0\}.$$

The topology is given by

- **1** The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology
- 2 The subset $TM \times \{0\}$ is closed with its usual topology
- 3 A sequence (or a net) $(y_n, x_n, t_n) \in M \times M \times \mathbb{R}^{\times}_+$ converges to $(x, \xi, 0)$ if

$$x_n, y_n \to x \quad t_n \to 0$$

3/26

Consider the topological space

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup TM \times \{0\}.$$

The topology is given by

2

- **1** The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology
- 2 The subset $TM imes \{0\}$ is closed with its usual topology
- 3 A sequence (or a net) $(y_n, x_n, t_n) \in M \times M \times \mathbb{R}^{\times}_+$ converges to $(x, \xi, 0)$ if

$$x_n, y_n \to x \quad t_n \to 0$$

$$\frac{y_n - x_n}{t_n} \to \xi.$$

Consider the topological space

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup TM \times \{0\}.$$

The topology is given by

- **1** The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology
- 2 The subset $TM imes \{0\}$ is closed with its usual topology
- S A sequence (or a net) (y_n, x_n, t_n) ∈ M × M × ℝ[×]₊ converges to (x, ξ, 0) if

$$x_n, y_n \to x \quad t_n \to 0$$

2

$$\frac{y_n - x_n}{t_n} \to \xi.$$

For those familiar with blowups from algebraic geometry, the above is an open subset of blowup of $M \times M \times \mathbb{R}_+$ along $\Delta_{M} \times \{0\}$.

3/26

We think of y - x as the unique constant coefficient vector field whose flow at time 1 sends x to y.

We think of y - x as the unique constant coefficient vector field whose flow at time 1 sends x to y. So we have

$$y = \exp(y - x) \cdot x$$

Consider X_1, \cdots, X_r satisfying $(C.H)_N$ for some $N \in \mathbb{N}$.

$$y = \exp(Z) \cdot x$$

 $y = \exp(Z) \cdot x$

where Z is a constant coefficient linear combination of X_1, \dots, X_r and their iterated Lie brackets up to N.

 $y = \exp(Z) \cdot x$

where Z is a constant coefficient linear combination of X_1, \dots, X_r and their iterated Lie brackets up to N. Problem?

 $y = \exp(Z) \cdot x$

where Z is a constant coefficient linear combination of X_1, \dots, X_r and their iterated Lie brackets up to N. Problem? There is more than one Z !

 $y = \exp(Z) \cdot x$

where Z is a constant coefficient linear combination of X_1, \dots, X_r and their iterated Lie brackets up to N. Problem? There is more than one Z !

Solution: Take the limit of the space of solution = Take the limit of manifolds.

We say that a sequence of pointed metric spaces (X_n,d_n,x_n) converge in the Gromov-Hausdorff distance to (X,d,x) if

We say that a sequence of pointed metric spaces (X_n, d_n, x_n) converge in the Gromov-Hausdorff distance to (X, d, x) if for any R > 0, there exists

$$f_n: \bar{B}_{X_n}(x_n, R) \to \bar{B}_X(x, R)$$

We say that a sequence of pointed metric spaces (X_n, d_n, x_n) converge in the Gromov-Hausdorff distance to (X, d, x) if for any R > 0, there exists

$$f_n: \bar{B}_{X_n}(x_n, R) \to \bar{B}_X(x, R)$$

such that

$$\lim_{n \to \infty} \sup_{a,b \in X_n} |d_n(a,b) - d(f_n(a), f_n(b))| = 0$$

We say that a sequence of pointed metric spaces (X_n, d_n, x_n) converge in the Gromov-Hausdorff distance to (X, d, x) if for any R > 0, there exists

$$f_n: \bar{B}_{X_n}(x_n, R) \to \bar{B}_X(x, R)$$

such that

$$\lim_{n \to \infty} \sup_{a, b \in X_n} |d_n(a, b) - d(f_n(a), f_n(b))| = 0$$

and similarly $g_n: \bar{B}_X(x,R) \to \bar{B}_{X_n}(x_n,R)$ with similar properties.

We say that a sequence of pointed metric spaces (X_n, d_n, x_n) converge in the Gromov-Hausdorff distance to (X, d, x) if for any R > 0, there exists

$$f_n: \bar{B}_{X_n}(x_n, R) \to \bar{B}_X(x, R)$$

such that

$$\lim_{n \to \infty} \sup_{a,b \in X_n} |d_n(a,b) - d(f_n(a), f_n(b))| = 0$$

and similarly $g_n: \bar{B}_X(x,R) \to \bar{B}_{X_n}(x_n,R)$ with similar properties.

Remark : If limit exists it is unique up to isometry

We say that a sequence of pointed metric spaces (X_n, d_n, x_n) converge in the Gromov-Hausdorff distance to (X, d, x) if for any R > 0, there exists

$$f_n: \bar{B}_{X_n}(x_n, R) \to \bar{B}_X(x, R)$$

such that

$$\lim_{n \to \infty} \sup_{a, b \in X_n} |d_n(a, b) - d(f_n(a), f_n(b))| = 0$$

and similarly $g_n: \bar{B}_X(x,R) \to \bar{B}_{X_n}(x_n,R)$ with similar properties.

Remark : If limit exists it is unique up to isometry Example : If d is a Riemmanian metric on M, then

$$\lim_{t \to 0^+} (M, \frac{d}{t}, x) = (T_x M, d_{costant}, x)$$

Consider

$$\begin{split} M \times M \times \mathbb{R}^{\times}_{+} \sqcup TM \times \{0\} &\to \mathbb{R} \\ (y, x, t) &\mapsto \frac{d(y, x)}{t} \\ (x, \xi, 0) &\mapsto \|\xi\| \end{split}$$

It is continuous and (almost) proper.

Consider

$$\begin{split} M \times M \times \mathbb{R}_+^{\times} \sqcup TM \times \{0\} &\to \mathbb{R} \\ (y, x, t) &\mapsto \frac{d(y, x)}{t} \\ (x, \xi, 0) &\mapsto \|\xi\| \end{split}$$

It is continuous and (almost) proper.

So what we put at $\boldsymbol{0}$ is the limit in the sense of Gromov-Hausdorff

Take $y, x \in M$. The distance $d_{sR}(y, x) = \inf |||Z|||$ where inf is over all Z such that $y = \exp(Z) \cdot x$ and if

$$Z = \sum \alpha_i X_i + \sum \beta_{ij} [X_i, X_j] + \sum \gamma_{ijk} [[X_i, X_j], X_k] + \cdots$$

, then

$$|||Z||| = \sum |\alpha_i| + \sum |\beta_{ij}|^{\frac{1}{2}} + \sum |\gamma_{ijk}|^{1/3} + \cdots$$

What is the tangent space in sub-Riemmanian geometry

What is the limit

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x)?$$

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x)?$$

Let G be the free nilpotent group of degree N with as many generators as $X_i{\rm 's.}$

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x)?$$

Let G be the free nilpotent group of degree N with as many generators as X_i 's. For each $x \in M$, Bellaiche (1996) defines a connected subgroup $\mathfrak{r}_x \subseteq G$ and he proves that

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x) = (G/\mathfrak{r}_x, d_{sR}, \mathfrak{r}_x).$$

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x)?$$

Let G be the free nilpotent group of degree N with as many generators as X_i 's. For each $x \in M$, Bellaiche (1996) defines a connected subgroup $\mathfrak{r}_x \subseteq G$ and he proves that

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x) = (G/\mathfrak{r}_x, d_{sR}, \mathfrak{r}_x).$$

Furthermore $\dim(G/\mathfrak{r}_x) = \dim(M)$.

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x)?$$

Let G be the free nilpotent group of degree N with as many generators as X_i 's. For each $x \in M$, Bellaiche (1996) defines a connected subgroup $\mathfrak{r}_x \subseteq G$ and he proves that

$$\lim_{t \to 0^+} (M, \frac{d_{sR}}{t}, x) = (G/\mathfrak{r}_x, d_{sR}, \mathfrak{r}_x).$$

Furthermore $\dim(G/\mathfrak{r}_x) = \dim(M)$. Is the limit uniform?

Other tangent cones

Let $x_n \to x$ and $t_n \to 0^+$. Then what is

$$\lim_{n \to +\infty} (M, \frac{d_{sR}}{t_n}, x_n)$$

э

Other tangent cones

Let $x_n \to x$ and $t_n \to 0^+$. Then what is

$$\lim_{n \to +\infty} (M, \frac{d_{sR}}{t_n}, x_n)$$

Answer it is always of the form $(G/V, d_{sR}, V)$ but in general $V \neq \mathfrak{r}_x$.

Example

Take ∂_x and $x^k \partial_y$ on \mathbb{R}^2 .

10 / 26
Other tangent cones

Let $x_n \to x$ and $t_n \to 0^+$. Then what is

$$\lim_{n \to +\infty} (M, \frac{d_{sR}}{t_n}, x_n)$$

Answer it is always of the form $(G/V, d_{sR}, V)$ but in general $V \neq \mathfrak{r}_x$.

Example

Take ∂_x and $x^k \partial_y$ on \mathbb{R}^2 . For each $\lambda \in \mathbb{P}^1(\mathbb{R})$, we define a connected subgroup $V_\lambda \subseteq G$ (all pairwise distinct).

Other tangent cones

Let $x_n \to x$ and $t_n \to 0^+$. Then what is

$$\lim_{n \to +\infty} (M, \frac{d_{sR}}{t_n}, x_n)$$

Answer it is always of the form $(G/V, d_{sR}, V)$ but in general $V \neq \mathfrak{r}_x$.

Example

Take ∂_x and $x^k \partial_y$ on \mathbb{R}^2 . For each $\lambda \in \mathbb{P}^1(\mathbb{R})$, we define a connected subgroup $V_\lambda \subseteq G$ (all pairwise distinct). Then $(x_n, y_n) \to (0, 0)$ and $t_n \to 0^+$.

Let $x_n \to x$ and $t_n \to 0^+$. Then what is

$$\lim_{n \to +\infty} (M, \frac{d_{sR}}{t_n}, x_n)$$

Answer it is always of the form $(G/V, d_{sR}, V)$ but in general $V \neq \mathfrak{r}_x$.

Example

Take ∂_x and $x^k \partial_y$ on \mathbb{R}^2 . For each $\lambda \in \mathbb{P}^1(\mathbb{R})$, we define a connected subgroup $V_\lambda \subseteq G$ (all pairwise distinct). Then $(x_n, y_n) \to (0, 0)$ and $t_n \to 0^+$. Consider $[x_n : t_n] \in \mathbb{P}^1(\mathbb{R})$. We show that

$$\lim_{n \to +\infty} (\mathbb{R}^2, \frac{d_{CC}}{t_n}, (x_n, y_n)) = (G/V_\lambda, d_{sR}, V_\lambda)$$

if and only if $[x_n:t_n] \to \lambda$.

In general, for each $x \in M$ and t > 0, we define a subspace $h_{x,t} \subseteq \mathfrak{g}$ of codimension $\dim(M)$.

In general, for each $x \in M$ and t > 0, we define a subspace $h_{x,t} \subseteq \mathfrak{g}$ of codimension $\dim(M)$.

Theorem (M. 2022)

2

Let $x_n \to x$ and $t_n \to 0$ and $h_{x_n,t_n} \to \mathfrak{v}$, then

1 v is a Lie subalgebra of \mathfrak{g} .

$$\lim_{n \to +\infty} (M, \frac{d_{CC}}{t_n}, x_n) = (G/V, d_{sR}, V)$$

where V is the connected subgroup integrating v.

11 / 26

 $M \times M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_{x}} G/V \times \{0\}$

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$$

The topology is given by

() The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$$

The topology is given by

- **(**) The subset $M \times M \times \mathbb{R}^{\times}_+$ is open with its usual topology
- ② $\sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$ is a closed subset with the subquotient topology from $M \times \text{Grass}(\mathfrak{g}) \times G$

A sequence (y_n, x_n, t_n) converges to (x, gV, 0)

A sequence (y_n, x_n, t_n) converges to (x, gV, 0) if $y_n, x_n \to x$ and $t_n \to 0$ A sequence (y_n, x_n, t_n) converges to (x, gV, 0) if

 $h_{x_n,t_n} \to \mathfrak{v}$ or equivalently $\lim_{n\to+\infty} (M, \frac{d_{sR}}{t_n}, x_n) = (G/V, d_{sR}, V).$

A sequence (y_n, x_n, t_n) converges to (x, gV, 0) if

- **2** $h_{x_n,t_n} \to \mathfrak{v}$ or equivalently $\lim_{n \to +\infty} (M, \frac{d_{sR}}{t_n}, x_n) = (G/V, d_{sR}, V).$
- Solution There exists Z_n such that y_n = exp(Z_n) ⋅ x_n and α_{1/t_n}(Z_n) converges to an element in gV.

$M \times M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$$

It is locally compact Hausdorff second countable

$$M\times M\times \mathbb{R}_+^{\times}\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times\{0\}$$

 It is locally compact Hausdorff second countable (so metrizable by general topology)

$$M \times M \times \mathbb{R}_+^{\times} \sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$$

- It is locally compact Hausdorff second countable (so metrizable by general topology)
- It is not a smooth manifold

$$M \times M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$$

- It is locally compact Hausdorff second countable (so metrizable by general topology)
- 2 It is not a smooth manifold (If you think vector fields like $X = \sin(1/x)e^{-\frac{1}{x^2}}\frac{\partial}{\partial x}$ exists then it isn't a smooth manifold)

What is the Helffer-Nourrigat set?

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry

æ

э

For each $x \in M$, let

$$\mathcal{T}_x = \sqcup_{V \in \mathcal{G}_x} \mathfrak{v}^\perp \subseteq \mathfrak{g}^*.$$

Notice that v^{\perp} is the contangent bundle of G/V at V.

For each $x \in M$, let

$$\mathcal{T}_x = \sqcup_{V \in \mathcal{G}_x} \mathfrak{v}^\perp \subseteq \mathfrak{g}^*.$$

Notice that v^{\perp} is the contangent bundle of G/V at V.

Proposition

 \mathcal{T}_x is equal to the set Helffer and Nourrigat defined (1979)

For each $x \in M$, let

$$\mathcal{T}_x = \sqcup_{V \in \mathcal{G}_x} \mathfrak{v}^\perp \subseteq \mathfrak{g}^*.$$

Notice that v^{\perp} is the contangent bundle of G/V at V.

Proposition

 \mathcal{T}_x is equal to the set Helffer and Nourrigat defined (1979)

Proof.

Grassmanian maifolds are compact.

15/26

What is the Helffer-Nourrigat conjecture?

э

Dictionary between sub-Riemannian geometry and Riemannian geometry

maximally hypoelliptic = elliptic Helffer-Nourrigat set = contangent space $\pi(D)$ = classical principal

э

Let $x \in M$ and $V \in \mathcal{G}_x$. Consider

 $\pi_V: G \to B(L^2G/V)$

Let $x \in M$ and $V \in \mathcal{G}_x$. Consider

$$\pi_V: G \to B(L^2G/V)$$

Let $\operatorname{supp}(\pi_V) \subseteq \hat{G}$ be its support.

Let $x \in M$ and $V \in \mathcal{G}_x$. Consider

$$\pi_V: G \to B(L^2G/V)$$

Let $\operatorname{supp}(\pi_V) \subseteq \hat{G}$ be its support.

Proposition

 $\cup_{V \in \mathcal{G}_x} \operatorname{supp}(\pi_V)$ is the Helffer-Nourrigat set seen as a set of representations.

The space

$$M\times M\times \mathbb{R}_+^{\times}\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times \{0\}$$

is a topological groupoid.

The space

$$M\times M\times \mathbb{R}_+^{\times}\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times \{0\}$$

is a topological groupoid. Its space is objects is

 $M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} \{V\}$

Proposition (M. 2021)

Let $G \to G^0$ be a topological groupoid,

The space

$$M\times M\times \mathbb{R}_+^{\times}\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times \{0\}$$

is a topological groupoid. Its space is objects is

 $M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} \{V\}$

Proposition (M. 2021)

Let $G \to G^0$ be a topological groupoid, X a space with $\pi : G^0 \to X$ a continuous map such that $\pi \circ s = \pi \circ r$. That is

$$G = \sqcup_{x \in X} G_x$$

algebraically. Let $x_0 \in X$.

The space

$$M\times M\times \mathbb{R}_+^{\times}\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times \{0\}$$

is a topological groupoid. Its space is objects is

 $M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} \{V\}$

Proposition (M. 2021)

Let $G \to G^0$ be a topological groupoid, X a space with $\pi : G^0 \to X$ a continuous map such that $\pi \circ s = \pi \circ r$. That is

$$G = \sqcup_{x \in X} G_x$$

algebraically. Let $x_0 \in X$. If G is amenable and

The space

$$M\times M\times \mathbb{R}_+^{\times}\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times \{0\}$$

is a topological groupoid. Its space is objects is

 $M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} \{V\}$

Proposition (M. 2021)

Let $G \to G^0$ be a topological groupoid, X a space with $\pi : G^0 \to X$ a continuous map such that $\pi \circ s = \pi \circ r$. That is

$$G = \sqcup_{x \in X} G_x$$

algebraically. Let $x_0 \in X$. If G is amenable and $G_{x_0} \subseteq \overline{\bigcup_{x \neq x_0} G_x}$.

The space

$$M\times M\times \mathbb{R}_+^{\times}\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times \{0\}$$

is a topological groupoid. Its space is objects is

 $M \times \mathbb{R}^{\times}_{+} \sqcup_{x \in M, V \in \mathcal{G}_x} \{V\}$

Proposition (M. 2021)

Let $G \to G^0$ be a topological groupoid, X a space with $\pi : G^0 \to X$ a continuous map such that $\pi \circ s = \pi \circ r$. That is

$$G = \sqcup_{x \in X} G_x$$

algebraically. Let $x_0 \in X$. If G is amenable and $G_{x_0} \subseteq \overline{\bigcup_{x \neq x_0} G_x}$. Then for any $f \in C_c(G)$,

$$\limsup_{x \to x_0} \|f_{|G_x}\|_{C^*G_x} = \|f_{|G_{x_0}}\|_{C^*G_{x_0}}$$

For any f continuous with compact support on our space, we have

$$\limsup_{t \to 0^+} \|f_{|M \times M \times \{t\}}\|_{B(L^2M)} = \sup_{x \in M, V \in \mathcal{G}_x} \|\pi_V(f_0)\| = \sup_{\pi} \|\pi(f_0)\|$$

where last sup is over representations in the Helffer-Nourrigat set (over all $x \in M$).

19/26

For any f continuous with compact support on our space, we have

$$\limsup_{t \to 0^+} \|f_{|M \times M \times \{t\}}\|_{B(L^2M)} = \sup_{x \in M, V \in \mathcal{G}_x} \|\pi_V(f_0)\| = \sup_{\pi} \|\pi(f_0)\|$$

where last sup is over representations in the Helffer-Nourrigat set (over all $x \in M$).

Our joint work with Androulidakis and Yuncken is to transfer the identity to an identity about pseudodifferential operators.
Where do subelliptic estimates come from?

For any f continuous with compact support on our space, we have

$$\limsup_{t \to 0^+} \|f_{|M \times M \times \{t\}}\|_{B(L^2M)} = \sup_{x \in M, V \in \mathcal{G}_x} \|\pi_V(f_0)\| = \sup_{\pi} \|\pi(f_0)\|$$

where last sup is over representations in the Helffer-Nourrigat set (over all $x \in M$).

Our joint work with Androulidakis and Yuncken is to transfer the identity to an identity about pseudodifferential operators.

If \boldsymbol{P} is a classical pseudodifferential operator of order $\boldsymbol{0},$ then

$$\|P\|_{\frac{B(L^2M)}{K(L^2M)}} = \sup_{\xi \in T^*M \setminus \{0\}} |\sigma^0(P,\xi)|.$$

Our joint work is creat a pseudodifferential calculus and then show that

$$||P||_{\frac{B(L^2M)}{K(L^2M)}} = \sup_{\pi \neq 1_G} ||\pi(P)||.$$

All what we did only applies to operators like

$$X_1^2 + \cdots X_n^2$$

but not

$$X_1^2 + \dots + X_n^2 + X_0$$

< ∃⇒

Image: A matrix

æ

All what we did only applies to operators like

$$X_1^2 + \cdots X_n^2$$

but not

$$X_1^2 + \dots + X_n^2 + X_0$$

Solution: Add weights. Suppose that each vector field comes with a weight which is a natural number ≥ 1

Let X_1, \dots, X_n be vector fields satisfying Hormander's condition on a compact manifold, each equipped with a weight (natural number ≥ 1)

Let X_1, \dots, X_n be vector fields satisfying Hormander's condition on a compact manifold, each equipped with a weight (natural number ≥ 1)

Definition

A \ast -maximally hypoelliptic differential operator is a differential operator D such that

$$\pi(D): C^{\infty}(\pi) \to C^{\infty}(\pi)$$

is bijective for each nontrivial representation in the Helffer-Nourrigat set.

Let X_1, \dots, X_n be vector fields satisfying Hormander's condition on a compact manifold, each equipped with a weight (natural number ≥ 1)

Definition

A $\ast\text{-maximally}$ hypoelliptic differential operator is a differential operator D such that

$$\pi(D): C^{\infty}(\pi) \to C^{\infty}(\pi)$$

is bijective for each nontrivial representation in the Helffer-Nourrigat set.

Corollary

If D is *-maximally hypoelliptic, then $D: C^{\infty}(M) \to C^{\infty}(M)$ has finite dimensional kernel and cokernel.

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M.

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M. Then

 $\operatorname{Ind}_a(D) = \operatorname{Ind}_{AS}(Ex(\mu(\sigma(D))))$

22 / 26

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M. Then

 $\operatorname{Ind}_a(D) = \operatorname{Ind}_{AS}(Ex(\mu(\sigma(D))))$

22 / 26

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M. Then

 $\operatorname{Ind}_{a}(D) = \operatorname{Ind}_{AS}(Ex(\mu(\sigma(D))))$

Special cases (contact manifolds) obtained by van Erp and Baum.

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M. Then

 $\operatorname{Ind}_a(D) = \operatorname{Ind}_{AS}(Ex(\mu(\sigma(D))))$

Special cases (contact manifolds) obtained by van Erp and Baum. • D *-maximally hypoelliptic implies $[\sigma(D)] \in K_0(C^*\mathcal{T})$.

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M. Then

 $\operatorname{Ind}_a(D) = \operatorname{Ind}_{AS}(Ex(\mu(\sigma(D))))$

Special cases (contact manifolds) obtained by van Erp and Baum.

- D *-maximally hypoelliptic implies $[\sigma(D)] \in K_0(C^*\mathcal{T})$.
- One has an isomorphism

$$\mu: K_0(C^*\mathcal{T}) \to K^0(\mathcal{T}).$$

The space $\mathcal{T} = \cup_{x \in M} \{x\} \times \mathcal{T}_x \subseteq M \times \mathfrak{g}^*$ is the union of all \mathcal{T}_x

3

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M. Then

 $\operatorname{Ind}_a(D) = \operatorname{Ind}_{AS}(Ex(\mu(\sigma(D))))$

Special cases (contact manifolds) obtained by van Erp and Baum.

- D *-maximally hypoelliptic implies $[\sigma(D)] \in K_0(C^*\mathcal{T})$.
- One has an isomorphism

$$\mu: K_0(C^*\mathcal{T}) \to K^0(\mathcal{T}).$$

The space $\mathcal{T} = \bigcup_{x \in M} \{x\} \times \mathcal{T}_x \subseteq M \times \mathfrak{g}^*$ is the union of all \mathcal{T}_x • One has Excision map $Ex : K^0(\mathcal{T}^*) \to K^0(T^*M)$

Let X_1, \dots, X_m be vector fields (with weights) satisfying Hörmander's condition, D *-maximally hypoelliptic on any compact manifold M. Then

 $\operatorname{Ind}_a(D) = \operatorname{Ind}_{AS}(Ex(\mu(\sigma(D))))$

Special cases (contact manifolds) obtained by van Erp and Baum.

- D *-maximally hypoelliptic implies $[\sigma(D)] \in K_0(C^*\mathcal{T})$.
- One has an isomorphism

$$\mu: K_0(C^*\mathcal{T}) \to K^0(\mathcal{T}).$$

The space $\mathcal{T} = \cup_{x \in M} \{x\} \times \mathcal{T}_x \subseteq M \times \mathfrak{g}^*$ is the union of all \mathcal{T}_x

• One has Excision map $Ex: K^0(\mathcal{T}^*) \to K^0(T^*M)$ and $\operatorname{Ind}_{AS}: K_0(T^*M) \to \mathbb{Z}.$

We cant to connect

$M\times M\times]0,1]\sqcup_{x\in M,V\in \mathcal{G}_x}G/V\times \{0\}$

to

$M\times M\times]0,1]\sqcup TM\times \{0\}$

→

э

We cant to connect

$$M \times M \times]0,1] \sqcup_{x \in M, V \in \mathcal{G}_x} G/V \times \{0\}$$

to

$M\times M\times]0,1]\sqcup TM\times \{0\}$

< 4 ₽ × <

э

Let $k \in \mathbb{N}$ be arbitrary. Consider ∂_x and $\sin(x)^k \partial_y$ on $S^1 \times S^1$.

돈에 돈

< □ > < @ >

Let $k \in \mathbb{N}$ be arbitrary. Consider ∂_x and $\sin(x)^k \partial_y$ on $S^1 \times S^1$. Associate weight 1 and k respectively.

4 A N

Let $k \in \mathbb{N}$ be arbitrary. Consider ∂_x and $\sin(x)^k \partial_y$ on $S^1 \times S^1$. Associate weight 1 and k respectively. Consider

$$D = (-1)^k \partial_x^{2k} - \sin(x)^{2k} \partial_y^2 + ig(x, y) \partial_y$$

where $g: S^1 \times S^1 \to \mathbb{C}$ smooth.

э

Let $k \in \mathbb{N}$ be arbitrary. Consider ∂_x and $\sin(x)^k \partial_y$ on $S^1 \times S^1$. Associate weight 1 and k respectively. Consider

$$D = (-1)^k \partial_x^{2k} - \sin(x)^{2k} \partial_y^2 + ig(x, y) \partial_y$$

where $g: S^1 \times S^1 \to \mathbb{C}$ smooth. For any $(x, y) \in S^1 \times S^1$, $(\xi, \eta) \in \mathbb{R}^2$, the Helffer-Nourrigat set at (x, y) contains a 1-dimensional representation parametrised with (ξ, η) for which

$$\pi(D) = \xi^{2k} + \eta^2$$

$$\pi_{\pm}(D) = (-1)^k \partial_z^{2k} + z^{2k} \mp g(x, y) Id_{L^2\mathbb{R}}$$

æ

$$\pi_{\pm}(D) = (-1)^k \partial_z^{2k} + z^{2k} \mp g(x, y) Id_{L^2\mathbb{R}}$$

D is $\ast\text{-maximally}$ hypoelliptic iff

$$g(0,y),g(\pi,y)\notin \pm \mathrm{spec}((-1)^k\partial_z^{2k}+z^{2k})$$

25 / 26

$$\pi_{\pm}(D) = (-1)^k \partial_z^{2k} + z^{2k} \mp g(x, y) Id_{L^2\mathbb{R}}$$

D is *-maximally hypoelliptic iff

$$g(0,y), g(\pi,y) \notin \pm \operatorname{spec}((-1)^k \partial_z^{2k} + z^{2k})$$

Consider $g(0,y): S^1 \to \mathbb{C}$.

$$\pi_{\pm}(D) = (-1)^k \partial_z^{2k} + z^{2k} \mp g(x, y) Id_{L^2 \mathbb{R}}$$

D is *-maximally hypoelliptic iff

$$g(0,y), g(\pi,y) \notin \pm \operatorname{spec}((-1)^k \partial_z^{2k} + z^{2k})$$

Consider $g(0,y):S^1\to \mathbb{C}.$ Let $w(g(0,y),\lambda)$ be winding number.

э

25 / 26

$$\pi_{\pm}(D) = (-1)^k \partial_z^{2k} + z^{2k} \mp g(x, y) Id_{L^2 \mathbb{R}}$$

D is *-maximally hypoelliptic iff

$$g(0,y), g(\pi,y) \notin \pm \operatorname{spec}((-1)^k \partial_z^{2k} + z^{2k})$$

Consider $g(0,y):S^1\to \mathbb{C}.$ Let $w(g(0,y),\lambda)$ be winding number. Then

Ind_a(D) =
$$\sum_{\lambda} w(g(0,y),\lambda) - w(g(0,y),-\lambda)$$

12

$$\pi_{\pm}(D) = (-1)^k \partial_z^{2k} + z^{2k} \mp g(x, y) Id_{L^2 \mathbb{R}}$$

D is *-maximally hypoelliptic iff

$$g(0,y), g(\pi,y) \notin \pm \operatorname{spec}((-1)^k \partial_z^{2k} + z^{2k})$$

Consider $g(0,y):S^1\to\mathbb{C}.$ Let $w(g(0,y),\lambda)$ be winding number. Then

$$Ind_a(D) = \sum_{\lambda} w(g(0, y), \lambda) - w(g(0, y), -\lambda) -w(g(\pi, y), \lambda) + w(g(\pi, y), -\lambda)$$

э

Thank you for your attention

э