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Question

1 How to connect a differential operator to its representations in the
Helffer-Nourrigat set?

2 Why the Helffer-Nourrigat set?

3 What about a topological index formula for the analytic index of
∗-maximally hypoelliptic differential operators?

4 What about the heat kernel and Weyl asymptotics of the eigenvalues?
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Connes’s topological space

Consider the topological space

M ×M × R×
+ ⊔ TM × {0}.

The topology is given by
1 The subset M ×M × R×

+ is open with its usual topology
2 The subset TM × {0} is closed with its usual topology
3 A sequence (or a net) (yn, xn, tn) ∈ M ×M × R×

+ converges to
(x, ξ, 0) if

1

xn, yn → x tn → 0

2
yn − xn

tn
→ ξ.

For those familiar with blowups from algebraic geometry, the above is an
open subset of blowup of M ×M × R+ along ∆M × {0}.
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Generalization to sub-Riemmanian geometry

We think of y − x as the unique constant coefficient vector field whose flow
at time 1 sends x to y.

So we have

y = exp(y − x) · x
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Generalization to sub-Riemmanian geometry

Consider X1, · · · , Xr satisfying (C.H)N for some N ∈ N.

For y, x ∈ M
(near the diagonal ), we search solutions of the equation

y = exp(Z) · x

where Z is a constant coefficient linear combination of X1, · · · , Xr and
their iterated Lie brackets up to N .
Problem? There is more than one Z !

Solution: Take the limit of the space of solution = Take the limit of
manifolds.
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Gromov-Hausdorff convergence

Definition

We say that a sequence of pointed metric spaces (Xn, dn, xn) converge in
the Gromov-Hausdorff distance to (X, d, x) if

for any R > 0, there exists

fn : B̄Xn(xn, R) → B̄X(x,R)

such that
lim
n→∞

sup
a,b∈Xn

|dn(a, b)− d(fn(a), fn(b))| = 0

and similarly gn : B̄X(x,R) → B̄Xn(xn, R) with similar properties.

Remark : If limit exists it is unique up to isometry
Example : If d is a Riemmanian metric on M , then

lim
t→0+

(M,
d

t
, x) = (TxM,dcostant, x)
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Connection to the tangent groupoid

Consider

M ×M × R×
+ ⊔ TM × {0} → R

(y, x, t) 7→ d(y, x)

t
(x, ξ, 0) 7→ ∥ξ∥

It is continuous and (almost) proper.

So what we put at 0 is the limit in the sense of Gromov-Hausdorff
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Sub-Riemmanian metric

Take y, x ∈ M . The distance dsR(y, x) = inf |||Z||| where inf is over all Z
such that y = exp(Z) · x and if

Z =
∑

αiXi +
∑

βij [Xi, Xj ] +
∑

γijk[[Xi, Xj ], Xk] + · · ·

, then
|||Z||| =

∑
|αi|+

∑
|βij |

1
2 +

∑
|γijk|1/3 + · · ·
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What is the tangent space in sub-Riemmanian geometry

What is the limit

lim
t→0+

(M,
dsR
t

, x)?

Let G be the free nilpotent group of degree N with as many generators as
Xi’s. For each x ∈ M , Bellaiche (1996) defines a connected subgroup
rx ⊆ G and he proves that

lim
t→0+

(M,
dsR
t

, x) = (G/rx, dsR, rx).

Furthermore dim(G/rx) = dim(M).
Is the limit uniform?

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 9 / 26



What is the tangent space in sub-Riemmanian geometry

What is the limit

lim
t→0+

(M,
dsR
t

, x)?

Let G be the free nilpotent group of degree N with as many generators as
Xi’s.

For each x ∈ M , Bellaiche (1996) defines a connected subgroup
rx ⊆ G and he proves that

lim
t→0+

(M,
dsR
t

, x) = (G/rx, dsR, rx).

Furthermore dim(G/rx) = dim(M).
Is the limit uniform?

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 9 / 26



What is the tangent space in sub-Riemmanian geometry

What is the limit

lim
t→0+

(M,
dsR
t

, x)?

Let G be the free nilpotent group of degree N with as many generators as
Xi’s. For each x ∈ M , Bellaiche (1996) defines a connected subgroup
rx ⊆ G and he proves that

lim
t→0+

(M,
dsR
t

, x) = (G/rx, dsR, rx).

Furthermore dim(G/rx) = dim(M).
Is the limit uniform?

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 9 / 26



What is the tangent space in sub-Riemmanian geometry

What is the limit

lim
t→0+

(M,
dsR
t

, x)?

Let G be the free nilpotent group of degree N with as many generators as
Xi’s. For each x ∈ M , Bellaiche (1996) defines a connected subgroup
rx ⊆ G and he proves that

lim
t→0+

(M,
dsR
t

, x) = (G/rx, dsR, rx).

Furthermore dim(G/rx) = dim(M).

Is the limit uniform?

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 9 / 26



What is the tangent space in sub-Riemmanian geometry

What is the limit

lim
t→0+

(M,
dsR
t

, x)?

Let G be the free nilpotent group of degree N with as many generators as
Xi’s. For each x ∈ M , Bellaiche (1996) defines a connected subgroup
rx ⊆ G and he proves that

lim
t→0+

(M,
dsR
t

, x) = (G/rx, dsR, rx).

Furthermore dim(G/rx) = dim(M).
Is the limit uniform?

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 9 / 26



Other tangent cones

Let xn → x and tn → 0+. Then what is

lim
n→+∞

(M,
dsR
tn

, xn)

Answer it is always of the form (G/V, dsR, V ) but in general V ̸= rx.

Example

Take ∂x and xk∂y on R2. For each λ ∈ P1(R), we define a connected
subgroup Vλ ⊆ G (all pairwise distinct). Then (xn, yn) → (0, 0) and
tn → 0+. Consider [xn : tn] ∈ P1(R). We show that

lim
n→+∞

(R2,
dCC

tn
, (xn, yn)) = (G/Vλ, dsR, Vλ)

if and only if [xn : tn] → λ.

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 10 / 26



Other tangent cones

Let xn → x and tn → 0+. Then what is

lim
n→+∞

(M,
dsR
tn

, xn)

Answer it is always of the form (G/V, dsR, V ) but in general V ̸= rx.

Example

Take ∂x and xk∂y on R2.

For each λ ∈ P1(R), we define a connected
subgroup Vλ ⊆ G (all pairwise distinct). Then (xn, yn) → (0, 0) and
tn → 0+. Consider [xn : tn] ∈ P1(R). We show that

lim
n→+∞

(R2,
dCC

tn
, (xn, yn)) = (G/Vλ, dsR, Vλ)

if and only if [xn : tn] → λ.

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 10 / 26



Other tangent cones

Let xn → x and tn → 0+. Then what is

lim
n→+∞

(M,
dsR
tn

, xn)

Answer it is always of the form (G/V, dsR, V ) but in general V ̸= rx.

Example

Take ∂x and xk∂y on R2. For each λ ∈ P1(R), we define a connected
subgroup Vλ ⊆ G (all pairwise distinct).

Then (xn, yn) → (0, 0) and
tn → 0+. Consider [xn : tn] ∈ P1(R). We show that

lim
n→+∞

(R2,
dCC

tn
, (xn, yn)) = (G/Vλ, dsR, Vλ)

if and only if [xn : tn] → λ.

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 10 / 26



Other tangent cones

Let xn → x and tn → 0+. Then what is

lim
n→+∞

(M,
dsR
tn

, xn)

Answer it is always of the form (G/V, dsR, V ) but in general V ̸= rx.

Example

Take ∂x and xk∂y on R2. For each λ ∈ P1(R), we define a connected
subgroup Vλ ⊆ G (all pairwise distinct). Then (xn, yn) → (0, 0) and
tn → 0+.

Consider [xn : tn] ∈ P1(R). We show that

lim
n→+∞

(R2,
dCC

tn
, (xn, yn)) = (G/Vλ, dsR, Vλ)

if and only if [xn : tn] → λ.

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 10 / 26



Other tangent cones

Let xn → x and tn → 0+. Then what is

lim
n→+∞

(M,
dsR
tn

, xn)

Answer it is always of the form (G/V, dsR, V ) but in general V ̸= rx.

Example

Take ∂x and xk∂y on R2. For each λ ∈ P1(R), we define a connected
subgroup Vλ ⊆ G (all pairwise distinct). Then (xn, yn) → (0, 0) and
tn → 0+. Consider [xn : tn] ∈ P1(R). We show that

lim
n→+∞

(R2,
dCC

tn
, (xn, yn)) = (G/Vλ, dsR, Vλ)

if and only if [xn : tn] → λ.

Omar Mohsen, Paris-Saclay university Tangent space in sub-Riemannian geometry Mars, 2023 10 / 26



Other tangent cones

In general, for each x ∈ M and t > 0, we define a subspace hx,t ⊆ g of
codimension dim(M).

Theorem (M. 2022)

Let xn → x and tn → 0 and hxn,tn → v, then

1 v is a Lie subalgebra of g.

2

lim
n→+∞

(M,
dCC

tn
, xn) = (G/V, dsR, V )

where V is the connected subgroup integrating v.
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Connes’s space in sub-Riemannian geometry

Let Gx be the set of all V subgroups that can appear.

M ×M × R×
+ ⊔x∈M,V ∈Gx G/V × {0}

The topology is given by

1 The subset M ×M × R×
+ is open with its usual topology

2 ⊔x∈M,V ∈GxG/V × {0} is a closed subset with the subquotient
topology from M ×Grass(g)×G
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Connes’s space in sub-Riemannian geometry

A sequence (yn, xn, tn) converges to (x, gV, 0)

if

1 yn, xn → x and tn → 0

2 hxn,tn → v or equivalently limn→+∞(M, dsRtn , xn) = (G/V, dsR, V ).

3 There exists Zn such that yn = exp(Zn) · xn and α 1
tn

(Zn) converges

to an element in gV .
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Connes’s space in sub-Riemannian geometry

Properties of
M ×M × R×

+ ⊔x∈M,V ∈Gx G/V × {0}

1 It is locally compact Hausdorff second countable (so metrizable by
general topology)

2 It is not a smooth manifold (If you think vector fields like

X = sin(1/x)e−
1
x2

∂
∂x exists then it isn’t a smooth manifold)
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What is the Helffer-Nourrigat set?

For each x ∈ M , let
Tx = ⊔V ∈Gxv

⊥ ⊆ g∗.

Notice that v⊥ is the contangent bundle of G/V at V .

Proposition

Tx is equal to the set Helffer and Nourrigat defined (1979)

Proof.

Grassmanian maifolds are compact.
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What is the Helffer-Nourrigat conjecture?

Dictionary between sub-Riemannian geometry and Riemannian geometry

maximally hypoelliptic = elliptic

Helffer-Nourrigat set = contangent space

π(D) = classical principal
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Where do subelliptic estimates come from?

Let x ∈ M and V ∈ Gx. Consider

πV : G → B(L2G/V )

Let supp(πV ) ⊆ Ĝ be its support.

Proposition

∪V ∈Gxsupp(πV ) is the Helffer-Nourrigat set seen as a set of representations.
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Where do subelliptic estimates come from?

The space
M ×M × R×

+ ⊔x∈M,V ∈Gx G/V × {0}
is a topological groupoid.

Its space is objects is

M × R×
+ ⊔x∈M,V ∈Gx {V }

Proposition (M. 2021)

Let G → G0 be a topological groupoid, X a space with π : G0 → X a
continuous map such that π ◦ s = π ◦ r. That is

G = ⊔x∈XGx

algebraically. Let x0 ∈ X. If G is amenable and Gx0 ⊆ ∪x̸=x0Gx.Then for
any f ∈ Cc(G),

lim sup
x→x0

∥f|Gx
∥C∗Gx = ∥f|Gx0

∥C∗Gx0
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Where do subelliptic estimates come from?

For any f continuous with compact support on our space, we have

lim sup
t→0+

∥f|M×M×{t}∥B(L2M) = sup
x∈M,V ∈Gx

∥πV (f0)∥ = sup
π

∥π(f0)∥

where last sup is over representations in the Helffer-Nourrigat set (over all
x ∈ M).

Our joint work with Androulidakis and Yuncken is to transfer the identity to
an identity about pseudodifferential operators.
If P is a classical pseudodifferential operator of order 0, then

∥P∥B(L2M)

K(L2M)

= sup
ξ∈T ∗M\{0}

|σ0(P, ξ)|.

Our joint work is creat a pseudodifferential calculus and then show that

∥P∥B(L2M)

K(L2M)

= sup
π ̸=1G

∥π(P )∥.
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Weights

All what we did only applies to operators like

X2
1 + · · ·X2

n

but not
X2

1 + · · ·+X2
n +X0

Solution: Add weights. Suppose that each vector field comes with a weight
which is a natural number ≥ 1
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Index theory

Let X1, · · · , Xn be vector fields satisfying Hormander’s condition on a
compact manifold, each equipped with a weight (natural number ≥ 1)

Definition

A ∗-maximally hypoelliptic differential operator is a differential operator D
such that

π(D) : C∞(π) → C∞(π)

is bijective for each nontrivial representation in the Helffer-Nourrigat set.

Corollary

If D is ∗-maximally hypoelliptic, then D : C∞(M) → C∞(M) has finite
dimensional kernel and cokernel.
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Index theorem

Theorem (M. 2022)

Let X1, · · · , Xm be vector fields (with weights) satisfying Hörmander’s
condition, D ∗-maximally hypoelliptic on any compact manifold M .

Then

Inda(D) = IndAS(Ex(µ(σ(D))))

Special cases (contact manifolds) obtained by van Erp and Baum.

D ∗-maximally hypoelliptic implies [σ(D)] ∈ K0(C
∗T ).

One has an isomorphism

µ : K0(C
∗T ) → K0(T ).

The space T = ∪x∈M{x} × Tx ⊆ M × g∗ is the union of all Tx
One has Excision map Ex : K0(T ∗) → K0(T ∗M) and
IndAS : K0(T

∗M) → Z.
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condition, D ∗-maximally hypoelliptic on any compact manifold M . Then

Inda(D) = IndAS(Ex(µ(σ(D))))

Special cases (contact manifolds) obtained by van Erp and Baum.

D ∗-maximally hypoelliptic implies [σ(D)] ∈ K0(C
∗T ).

One has an isomorphism

µ : K0(C
∗T ) → K0(T ).

The space T = ∪x∈M{x} × Tx ⊆ M × g∗ is the union of all Tx
One has Excision map Ex : K0(T ∗) → K0(T ∗M) and
IndAS : K0(T

∗M) → Z.
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Proof

We cant to connect

M ×M×]0, 1] ⊔x∈M,V ∈Gx G/V × {0}

to
M ×M×]0, 1] ⊔ TM × {0}

TM M ×M

⊔x∈M,V ∈Gx

g
v ⊔x∈M,V ∈GxG/V
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Example

Let k ∈ N be arbitrary. Consider ∂x and sin(x)k∂y on S1 × S1.

Associate
weight 1 and k respectively. Consider

D = (−1)k∂2k
x − sin(x)2k∂2

y + ig(x, y)∂y

where g : S1 × S1 → C smooth.
For any (x, y) ∈ S1 × S1, (ξ, η) ∈ R2, the Helffer-Nourrigat set at (x, y)
contains a 1-dimensional representation parametrised with (ξ, η) for which

π(D) = ξ2k + η2
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Example

If sin(x) = 0, then there exists two infinite dimensional representations on
L2R with

π±(D) = (−1)k∂2k
z + z2k ∓ g(x, y)IdL2R

D is ∗-maximally hypoelliptic iff

g(0, y), g(π, y) /∈ ±spec((−1)k∂2k
z + z2k)

Consider g(0, y) : S1 → C. Let w(g(0, y), λ) be winding number. Then

Inda(D) =
∑

λw(g(0, y), λ)− w(g(0, y),−λ)

−w(g(π, y), λ) + w(g(π, y),−λ)
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Thank you for your attention
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