A Ruelle dynamical ζ -function for equivariant flows

Peter Hochs

Radboud University

Conference on Noncommutative Geometry and Representation Theory
Athens
10 March 2023

Joint work

Joint work with Hemanth Saratchandran (University of Adelaide):

"A Ruelle dynamical zeta function for equivariant flows", ArXiv:2303.00312.

1 The Ruelle dynamical ζ -function

Equivariant flows

A trace formula

4 An equivariant Fried conjecture

I The Ruelle dynamical ζ -function

Counting periodic flow curves

In this talk,

- M is a smooth manifold
- φ is a flow on M, i.e. a smooth action by $\mathbb R$ on M, without fixed points
- $F \to M$ is a vector bundle, and ∇^F a **flat** connection on F.

Counting periodic flow curves

In this talk,

- M is a smooth manifold
- φ is a flow on M, i.e. a smooth action by $\mathbb R$ on M, without fixed points
- $F \to M$ is a vector bundle, and ∇^F a **flat** connection on F.

The Ruelle dynamical ζ -function is a way to **count periodic flow curves** topologically, "twisted by ∇^{F} ".

Nondegenerate flows

• Consider the length spectrum

$$L(\varphi) := \{l > 0; \text{ there is an } m \in M \text{ such that } \varphi_l(m) = m\}.$$

• For $l \in L(\varphi)$, let $\Gamma_l(\varphi)$ be the set of **closed flow curves of period** l, modulo constant time shifts.

Nondegenerate flows

• Consider the length spectrum

$$L(\varphi) := \{l > 0; \text{ there is an } m \in M \text{ such that } \varphi_l(m) = m\}.$$

• For $l \in L(\varphi)$, let $\Gamma_l(\varphi)$ be the set of **closed flow curves of period** l, modulo constant time shifts.

Definition

The flow φ is **nondegenerate** if for all $I \in L(\varphi)$ and $\gamma \in \Gamma_I(\varphi)$,

$$\ker(1-T_{\gamma(0)}\varphi_I)=\mathbb{R}\gamma'(0).$$

Lemma

If φ is nondegenerate, then for all $I \in L(\varphi)$, the set $\Gamma_I(\varphi)$ is countable.

The Ruelle dynamical ζ -function

Definition

The **Ruelle dynamical** ζ -function for a nondegenerate φ and ∇^F is

$$\begin{split} R_{\varphi,\nabla^F}(z) := \\ \exp\left(\frac{1}{2}\sum_{I\in L(\varphi)}\frac{e^{-Iz}}{I}\sum_{\gamma\in\Gamma_I(\varphi)}\operatorname{sgn}\left(\det\left((1-T_{\gamma(0)}\varphi_I)|_{\gamma'(0)^\perp}\right)\right)T_\gamma^\#\operatorname{tr}(\rho_I(\gamma)^{-1})\right) \end{split}$$

for $z \in \mathbb{C}$ for which this converges.

Here

- $T_{\gamma}^{\#} := \min\{t > 0; \gamma(t) = \gamma(0)\} \le I$ is the **primitive period** of γ
- $\rho_I(\gamma) \colon F_{\gamma(0)} \to F_{\gamma(0)}$ is parallel transport along γ with respect to ∇^F .

The Ruelle dynamical ζ -function

Definition

The **Ruelle dynamical** ζ -function for a nondegenerate φ and ∇^F is

$$\begin{split} R_{\varphi,\nabla^F}(z) := \\ \exp\left(\frac{1}{2}\sum_{I\in L(\varphi)}\frac{e^{-Iz}}{I}\sum_{\gamma\in\Gamma_I(\varphi)}\operatorname{sgn}\left(\det\left((1-T_{\gamma(0)}\varphi_I)|_{\gamma'(0)^\perp}\right)\right)T_\gamma^\#\operatorname{tr}(\rho_I(\gamma)^{-1})\right) \end{split}$$

for $z \in \mathbb{C}$ for which this converges.

Here

- $T_{\gamma}^{\#}:=\min\{t>0; \gamma(t)=\gamma(0)\}\leq I$ is the **primitive period** of γ
- $\rho_I(\gamma) \colon F_{\gamma(0)} \to F_{\gamma(0)}$ is parallel transport along γ with respect to ∇^F .

Note:

- The terms resemble terms in fixed-point formulas.
- There is a more general definition.

Anosov flows

Let u be the generating vector field of φ .

Definition

The flow φ is **Anosov** if $TM=\mathbb{R}u\oplus E^+\oplus E^-$, for φ -invariant sub-bundles $E^\pm\subset TM$ such that there is a Riemannian metric on M and C,c>0 such that for all $m\in M$, $v^\pm\in E_m^\pm$ and t>0,

$$||T_m \varphi_{\pm t} v^{\pm}|| \leq C e^{-ct}.$$

If φ is Anosov, then it is nondegenerate.

Anosov flows

Let u be the generating vector field of φ .

Definition

The flow φ is **Anosov** if $TM=\mathbb{R}u\oplus E^+\oplus E^-$, for φ -invariant sub-bundles $E^\pm\subset TM$ such that there is a Riemannian metric on M and C,c>0 such that for all $m\in M$, $v^\pm\in E_m^\pm$ and t>0,

$$||T_m \varphi_{\pm t} v^{\pm}|| \leq C e^{-ct}.$$

If φ is Anosov, then it is nondegenerate.

Proposition (Margulis, 2004)

If φ is Anosov, then $L(\varphi)$ is countable, and there are C, c > 0 such that for all r > 0,

$$\# \bigcup_{1 \le r} \Gamma_1(\varphi) \le Ce^{cr}.$$

So $R_{\omega,\nabla^F}(z)$ converges if Re(z) is large enough.

Properties of the Ruelle dynamical ζ -function for Anosov flows

Theorem (Giulietti-Liverani-Pollicott, 2013; Dyatlov-Zworski, 2016)

If M is compact and orientable and φ is Anosov, then R_{φ,∇^F} has a meromorphic extension to $\mathbb C$.

Properties of the Ruelle dynamical ζ -function for Anosov flows

Theorem (Giulietti-Liverani-Pollicott, 2013; Dyatlov-Zworski, 2016)

If M is compact and orientable and φ is Anosov, then R_{φ,∇^F} has a meromorphic extension to $\mathbb C$.

Theorem (Dang-Guillarmou-Rivière-Shen, 2020)

Suppose that M is compact and orientable. For Anosov flows, $R_{\varphi,\nabla^F}(0)$, if defined, is invariant under a suitable notion of homotopy.

Properties of the Ruelle dynamical ζ -function for Anosov flows

Theorem (Giulietti-Liverani-Pollicott, 2013; Dyatlov-Zworski, 2016)

If M is compact and orientable and φ is Anosov, then R_{φ,∇^F} has a meromorphic extension to $\mathbb C$.

Theorem (Dang-Guillarmou-Rivière-Shen, 2020)

Suppose that M is compact and orientable. For Anosov flows, $R_{\varphi,\nabla^F}(0)$, if defined, is invariant under a suitable notion of homotopy.

Proofs of both results are based on an expression for R_{φ,∇^F} in terms of a distributional **flat trace**; more on this in part III.

Geodesic flow

Let X be a Riemannian manifold, and suppose that

$$M = S(TX) := \{ v \in TX; ||v|| = 1 \}.$$

Let φ be the **geodesic flow** on M:

$$\varphi_t(v) = \frac{d}{ds}\Big|_{s=t} \exp_X(sv) \in S(T_{\exp_X(tv)X}),$$

for all $t \in \mathbb{R}$, $x \in X$ and $v \in S(T_xX)$.

Geodesic flow

Let X be a Riemannian manifold, and suppose that

$$M = S(TX) := \{ v \in TX; ||v|| = 1 \}.$$

Let φ be the **geodesic flow** on M:

$$\varphi_t(v) = \left. \frac{d}{ds} \right|_{s=t} \exp_X(sv) \in S(T_{\exp_X(tv)X}),$$

for all $t \in \mathbb{R}$, $x \in X$ and $v \in S(T_xX)$.

Theorem

If X has negative sectional curvature, then φ is Anosov.

Example: the circle

Let $M = S^1 = \mathbb{R}/\mathbb{Z}$. Define φ by

$$\varphi_t(x+\mathbb{Z})=x+t+\mathbb{Z},$$

for $t, x \in \mathbb{R}$. Let γ be the unique flow curve up to equivalence

$$\gamma(t)=t+\mathbb{Z}.$$

Then φ is nondegenerate because $\gamma'(0)^{\perp} = \{0\}$.

Example: the circle

Let $M = S^1 = \mathbb{R}/\mathbb{Z}$. Define φ by

$$\varphi_t(x+\mathbb{Z})=x+t+\mathbb{Z},$$

for $t, x \in \mathbb{R}$. Let γ be the unique flow curve up to equivalence

$$\gamma(t)=t+\mathbb{Z}.$$

Then φ is nondegenerate because $\gamma'(0)^{\perp} = \{0\}$.

Let $\nabla^F = d + i\alpha dx$ on $F = M \times \mathbb{C}$, for $\alpha \in \mathbb{R}$. Then

- $L(\varphi) = \mathbb{N}$
- for all $l \in \mathbb{N}$, $\Gamma_l(\varphi) = \{\gamma\}$
- •

$$\operatorname{sgn}\left(\det\left((1-T_{\gamma(0)}arphi_I)|_{\gamma'(0)^\perp}
ight)
ight)=1$$

- $T_{\gamma}^{\#} = 1$ $\rho_{I}(\gamma) = e^{-i\alpha I}$.

Example: the circle

Let $M = S^1 = \mathbb{R}/\mathbb{Z}$. Define φ by

$$\varphi_t(x+\mathbb{Z})=x+t+\mathbb{Z},$$

for $t, x \in \mathbb{R}$. Let γ be the unique flow curve up to equivalence

$$\gamma(t)=t+\mathbb{Z}.$$

Then φ is nondegenerate because $\gamma'(0)^{\perp} = \{0\}$.

Let $\nabla^F = d + i\alpha dx$ on $F = M \times \mathbb{C}$, for $\alpha \in \mathbb{R}$. Then

- $L(\varphi) = \mathbb{N}$
- for all $l \in \mathbb{N}$, $\Gamma_l(\varphi) = \{\gamma\}$

•

$$\operatorname{sgn}\left(\det\left((1-T_{\gamma(0)}arphi_I)|_{\gamma'(0)^\perp}
ight)
ight)=1$$

- $T_{\gamma}^{\#} = 1$ $\rho_{I}(\gamma) = e^{-i\alpha I}$.

So

$$R_{\varphi,\nabla^F}(z) = \exp\left(rac{1}{2}\sum_{l=1}^{\infty}rac{e^{-lz-ilpha l}}{l}
ight) = (1-e^{-z+ilpha})^{-1/2}.$$

II Equivariant flows

Equivariant flows

From now on, we assume that a unimodular, locally compact group G acts properly on M, such that

- ullet for all $t\in\mathbb{R}$, the map $arphi_t$ is equivariant
- ullet F o M is G-equivariant and $abla^F$ is G-invariant
- M/G is compact.

Equivariant flows

From now on, we assume that a unimodular, locally compact group ${\it G}$ acts properly on ${\it M}$, such that

- ullet for all $t\in\mathbb{R}$, the map $arphi_t$ is equivariant
- $F \to M$ is G-equivariant and ∇^F is G-invariant
- M/G is compact.

Example

If X is a Riemannian manifold, on which G acts properly and isometrically, then the lifted action to M = S(TX) has these properties for the geodesic flow.

Example

If X is a compact manifold, and φ_X is a flow on X, then the action by $\pi_1(X)$ on the universal cover M of X has these properties for the lift of φ_X to M.

The g-length spectrum

From now on, fix $g \in G$.

Definition

The *g*-length spectrum of φ is

$$L_g(\varphi) := \{ l \neq 0; \text{ there is an } m \in M \text{ such that } \varphi_l(m) = gm \}.$$

The g-length spectrum

From now on, fix $g \in G$.

Definition

The g-length spectrum of φ is

$$L_g(\varphi) := \{ l \neq 0; \text{ there is an } m \in M \text{ such that } \varphi_l(m) = gm \}.$$

Now we also include negative 1.

Example

Consider the manifold $M=\mathbb{R}$, acted on by $G=\mathbb{R}$ by addition. Consider the flow

$$\varphi_t(x) = x + t.$$

Then for all nonzero $g \in \mathbb{R}$,

$$L_{g}(\varphi) = \{g\}.$$

If g < 0, then the g-length spectrum is nonempty because we allow l < 0.

g-nondegenerate flows

Definition

We write $\Gamma_I^g(\varphi)$ for the set flow curves γ such that $\gamma(I) = g\gamma(0)$, modulo constant time shifts.

Definition

The flow φ is g-nondegenerate if for all $I \in L_g(\varphi)$ and $\gamma \in \Gamma_I^g(\varphi)$,

$$\ker(1-\mathcal{T}_{\gamma(0)}\varphi_I\circ g^{-1})=\mathbb{R}\gamma'(0).$$

g-nondegenerate flows

Definition

We write $\Gamma_I^g(\varphi)$ for the set flow curves γ such that $\gamma(I) = g\gamma(0)$, modulo constant time shifts.

Definition

The flow φ is g-nondegenerate if for all $I \in L_g(\varphi)$ and $\gamma \in \Gamma_I^g(\varphi)$,

$$\ker(1-\mathcal{T}_{\gamma(0)}\varphi_I\circ g^{-1})=\mathbb{R}\gamma'(0).$$

Lemma

If φ is g-nondegenerate, then for all $I \in L_g(\varphi)$, the set $\Gamma_I^g(\varphi)$ is countable.

An equivariant primitive period?

Question: what is the most useful equivariant generalisation of the primitive period

$$T_{\gamma}^{\#}=\min\{t>0;\gamma(t)=\gamma(0)\}?$$

An equivariant primitive period?

Question: what is the most useful equivariant generalisation of the primitive period

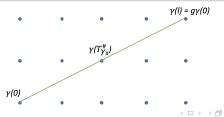
$$T_{\gamma}^{\#}=\min\{t>0;\gamma(t)=\gamma(0)\}?$$

Example

If $\gamma(I) = g\gamma(0)$, then one could define

$$T_{\gamma}^{\mathbf{g}} := \min\{t > 0; \gamma(t) = \mathbf{g}\gamma(0)\}.$$

However, if M is the universal cover of a manifold X, and $G = \pi_1(X)$, this does not encode the primitive period of a flow curve in X.



The *g*-primitive period

Because M/G is compact and the action by G is proper, there is a $\chi \in C_c^\infty(M)$ such that for all $m \in M$,

$$\int_{G} \chi(xm) \, dx = 1.$$

Definition

Let $\gamma\colon\mathbb{R}\to M$ be any smooth curve. Let $I_\gamma\subset\mathbb{R}$ be an interval such that $\gamma|_{I_\gamma}$ is a bijection onto its image, up to sets of measure zero. Then the χ -primitive period of γ is

$$T^{\chi}_{\gamma} := \int_{I_{\gamma}} \chi(\gamma(t)) dt.$$

Note that T_{γ}^{χ} also depends on I_{γ} .

The *g*-primitive period in the compact case

Suppose that G is **compact** (e.g. trivial), and normalise dx so that vol(G) = 1. Then M is also compact. And $\chi \equiv 1$ satisfies

$$\int_G \chi(xm) \, dx = 1$$

for all $m \in M$.

The *g*-primitive period in the compact case

Suppose that G is **compact** (e.g. trivial), and normalise dx so that vol(G) = 1. Then M is also compact. And $\chi \equiv 1$ satisfies

$$\int_{G} \chi(xm) \, dx = 1$$

for all $m \in M$.

If γ is a periodic curve in M, then we can take $I_{\gamma}=[0,T_{\gamma}^{\#}].$ So

$$T_{\gamma}^{\chi}=\int_{I_{\gamma}}\chi(\gamma(t))\,dt=\int_{0}^{T_{\gamma}^{\#}}1\,dt=T_{\gamma}^{\#}.$$

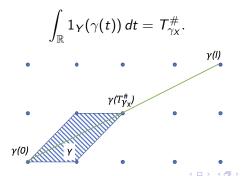
The g-primitive period for geodesic flow on universal covers

Let X be a compact Riemannian manifold, \tilde{X} its universal cover, and $M = S(T\tilde{X})$, acted on by $G = \pi_1(X)$.

The g-primitive period for geodesic flow on universal covers

Let X be a compact Riemannian manifold, \tilde{X} its universal cover, and $M = S(T\tilde{X})$, acted on by $G = \pi_1(X)$.

If X has negative sectional curvature, then the conjugacy class of an element of G contains a unique closed geodesic γ_X . Let I be the period of such a γ_X . Then $\gamma([0,T_{\gamma_X}^\#])$ lies in a fundamental domain $Y\subset M$ for the action by G. By approximating 1_Y be smooth functions χ , we can make T_{γ}^{χ} arbitrarily close to



The equivariant Ruelle ζ -function

Suppose that

- $L_g(\varphi)$ is countable
- ullet φ is g-nondegenerate
- if Z < G is the centraliser of g, then G/Z has a G-invariant measure d(hZ).

Definition

The equivariant Ruelle dynamical ζ -function for g, φ and ∇^F is

$$\begin{split} 2\log R_{\varphi,\nabla^F}^{\mathbf{g}}(z) := \\ & \int_{G/Z} \sum_{I \in L_{\mathbf{g}}(\varphi)} \frac{e^{-lz}}{I} \sum_{\gamma \in \Gamma_I^{\mathbf{g}}(\varphi)} \mathrm{sgn}\left(\det\left((1 - T_{\gamma(0)}\varphi_I \circ \mathbf{g}^{-1})|_{\gamma'(0)^\perp}\right)\right) \\ & T_{h\gamma}^{\chi} \operatorname{tr}(\mathbf{g} \circ \rho_I(\gamma)^{-1}) \, d(hZ), \end{split}$$

for $z \in \mathbb{C}$ for which this converges.

Well-definedness

$$\begin{split} 2\log R_{\varphi,\nabla^{\digamma}}^{\mathbf{g}}(z) &= \\ &\int_{G/Z} \sum_{I \in L_{\mathbf{g}}(\varphi)} \frac{e^{-Iz}}{I} \sum_{\gamma \in \Gamma_{I}^{\mathbf{g}}(\varphi)} \mathrm{sgn}\left(\det\left((1 - T_{\gamma(0)}\varphi_{I} \circ g^{-1})|_{\gamma'(0)^{\perp}}\right)\right) \\ &\qquad \qquad T_{h\gamma}^{\chi} \operatorname{tr}(g \circ \rho_{I}(\gamma)^{-1}) \, d(hZ). \end{split}$$

Lemma

The integrand is right Z-invariant, so indeed defines a function on G/Z.

Well-definedness

$$\begin{split} 2\log R_{\varphi,\nabla^F}^{\mathbf{g}}(z) = \\ \int_{G/Z} \sum_{I \in L_{\mathbf{g}}(\varphi)} \frac{e^{-Iz}}{I} \sum_{\gamma \in \Gamma_I^{\mathbf{g}}(\varphi)} \mathrm{sgn}\left(\det\left((1 - T_{\gamma(0)}\varphi_I \circ g^{-1})|_{\gamma'(0)^\perp}\right)\right) \\ T_{h\gamma}^{\chi} \operatorname{tr}(g \circ \rho_I(\gamma)^{-1}) \, d(hZ). \end{split}$$

Lemma

The integrand is right Z-invariant, so indeed defines a function on G/Z.

Proposition

The function $R_{\varphi,\nabla^F}^{\mathbf{g}}$ is independent of the cutoff function χ and the interval $I_{h\gamma}$ in the definition of $T_{h\gamma}^{\chi}$.

→□▶→□▶→□▶→□ ● のQ(

The classical Ruelle ζ -function

Lemma

If G is trivial and M is odd-dimensional, then

$$R_{\varphi,\nabla^F}^e = |R_{\varphi,\nabla^F}|.$$

Flows on universal covers

Proposition

If M is the universal cover of a compact manifold X, acted on by $G=\pi_1(X)$, and φ , F and ∇^F are pullbacks of corresponding data φ_X , F_X and ∇^{F_X} on X, then

$$R_{\varphi_X,\nabla^{F_X}} = \prod_{(g)} R_{\varphi,\nabla^F}^g,$$

where the product is over the conjugacy classes in $\pi_1(X)$.

Flows on universal covers

Proposition

If M is the universal cover of a compact manifold X, acted on by $G=\pi_1(X)$, and φ , F and ∇^F are pullbacks of corresponding data φ_X , F_X and ∇^{F_X} on X, then

$$R_{\varphi_X,\nabla^{F_X}} = \prod_{(g)} R_{\varphi,\nabla^{F}}^{g},$$

where the product is over the conjugacy classes in $\pi_1(X)$.

Lemma

In the setting of the previous proposition, if X = S(TZ) for Z with negative sectional curvature, φ_X is geodesic flow, and F_X and ∇^{F_X} are associated to a representation ρ of $\pi_1(Z)$, then

$$R_{\varphi,\nabla^F}^{\mathsf{g}}(z) = \exp\left(rac{1}{2}rac{e^{-lz}}{l}T_\gamma^\#\operatorname{tr}(
ho(g))
ight),$$

where γ is the closed geodesic in (g) and I is its period.

Example: the circle

Let $M = \mathbb{R}/\mathbb{Z}$. Define

$$\varphi_t(x+\mathbb{Z})=x+t+\mathbb{Z},$$

and

$$\gamma(t)=t+\mathbb{Z}.$$

Example: the circle

Let $M = \mathbb{R}/\mathbb{Z}$. Define

$$\varphi_t(x+\mathbb{Z})=x+t+\mathbb{Z},$$

and

$$\gamma(t)=t+\mathbb{Z}.$$

Let $G = \mathbb{R}/\mathbb{Z}$, acting on M in the natural way. Let $g = r + \mathbb{Z} \in G$.

Example: the circle

Let $M = \mathbb{R}/\mathbb{Z}$. Define

$$\varphi_t(x+\mathbb{Z})=x+t+\mathbb{Z},$$

and

$$\gamma(t)=t+\mathbb{Z}.$$

Let $G = \mathbb{R}/\mathbb{Z}$, acting on M in the natural way. Let $g = r + \mathbb{Z} \in G$. If $r \notin \mathbb{Z}$, then

- $L_g(\varphi) = r + \mathbb{Z}$
- for all $I \in L_g(\varphi)$, $\Gamma_I^g(\varphi) = {\gamma}$

•

$$\operatorname{\mathsf{sgn}}\left(\det\left((1-\mathit{T}_{\gamma(0)}arphi_l\circ g^{-1})|_{\gamma'(0)^\perp}
ight)
ight)=1$$

- $T_{h\gamma}^{\chi}=1$, for $\chi\equiv 1$
- $g \circ \rho_I(\gamma)^{-1} = e^{i\alpha I}$, for $F = M \times \mathbb{C}$ and $\nabla^F = d + i\alpha dx$.

So

$$R_{arphi,
abla^F}^{
m g}(z)=\exp\left(rac{1}{2}\sum_{n\in\mathbb{Z}}rac{e^{-|n+r|z+ilpha(n+r)}}{|n+r|}
ight).$$

Example: the line

Let $M = \mathbb{R}$. Define

$$\varphi_t(x)=x+t,$$

and

$$\gamma(t) = t$$
.

Example: the line

Let $M = \mathbb{R}$. Define

$$\varphi_t(x)=x+t,$$

and

$$\gamma(t) = t$$
.

Let $G = \mathbb{R}$, acting on M by addition. Let $g \in G$.

Example: the line

Let $M = \mathbb{R}$. Define

$$\varphi_t(x) = x + t,$$

and

$$\gamma(t) = t$$
.

Let $G = \mathbb{R}$, acting on M by addition. Let $g \in G$. Then

- $L_g(\varphi) = \{g\}$
- $\Gamma_g^g(\varphi) = \{\gamma\}$

•

$$\mathsf{sgn}\left(\mathsf{det}\left((1-\mathit{T}_{\gamma(0)}\varphi_{\mathit{g}}\circ \mathit{g}^{-1})|_{\gamma'(0)^{\perp}}\right)\right)=1$$

•

$$\mathcal{T}^\chi_{h\gamma} = \int_{\mathbb{R}} \chi(t+h) \, dt = 1$$

• $g \circ \rho_g(\gamma)^{-1} = e^{i\alpha g}$, for $F = M \times \mathbb{C}$ and $\nabla^F = d + i\alpha dx$.

So, without convergence issues,

$$R_{arphi,
abla^F}^{oldsymbol{g}}(z)=\exp\left(rac{1}{2}rac{e^{-|g|z+ilpha_g}}{|g|}
ight).$$

III A trace formula

A trace formula for the Ruelle ζ -function

Let Φ be the lift of φ to $\bigwedge^* T^* M \otimes F$ given by

$$\Phi_t := \wedge T \varphi_{-t}^* \otimes \tau_t^{\nabla^F},$$

where $\tau_t^{\nabla^F}$ is parallel transport in F with respect to ∇^F along flow curves. Let N be the number operator on differential forms on M.

A trace formula for the Ruelle ζ -function

Let Φ be the lift of φ to $\bigwedge^* T^* M \otimes F$ given by

$$\Phi_t := \wedge T \varphi_{-t}^* \otimes \tau_t^{\nabla^F},$$

where $\tau_t^{\nabla^F}$ is parallel transport in F with respect to ∇^F along flow curves. Let N be the number operator on differential forms on M.

Corollary (Of Guillemin's trace formula, 1977)

If M is compact, φ is Anosov and Re(z) is large,

$$R_{arphi,
abla^F}(z) = \exp\left(-rac{1}{2}\int_0^\infty \operatorname{Tr}^lat\left((-1)^N N \Phi_t^*
ight) rac{e^{-tz}}{t} \, dt
ight).$$

Here $\operatorname{Tr}^{\flat}$ is defined by "integrating" distributional Schwartz kernels over the diagonal. (The wave front set of Φ_t^* is disjoint from the conormal bundle because of Anosov/nondegeneracy condition.)

A trace formula for the Ruelle ζ -function

Let Φ be the lift of φ to $\bigwedge^* T^* M \otimes F$ given by

$$\Phi_t := \wedge T \varphi_{-t}^* \otimes \tau_t^{\nabla^F},$$

where $\tau_t^{\nabla^F}$ is parallel transport in F with respect to ∇^F along flow curves. Let N be the number operator on differential forms on M.

Corollary (Of Guillemin's trace formula, 1977)

If M is compact, φ is Anosov and Re(z) is large,

$$R_{arphi,
abla^F}(z) = \exp\left(-rac{1}{2}\int_0^\infty \operatorname{Tr}^lat\left((-1)^N N \Phi_t^*
ight) rac{e^{-tz}}{t} \, dt
ight).$$

Here Tr^{\flat} is defined by "integrating" distributional Schwartz kernels over the diagonal. (The wave front set of Φ_t^* is disjoint from the conormal bundle because of Anosov/nondegeneracy condition.)

Used in proofs of meromorphic extension and homotopy invariance for Anosov flows.

The flat g-trace

Definition

If T is a G-equivariant operator on smooth sections of a G-vector bundle over M, with Schwartz kernel K, then the **flat** g-**trace** of T is

$$\operatorname{Tr}_g^\flat(T) := \int_{G/Z} \int_M \chi(hgh^{-1}m) \operatorname{tr} \bigl(hgh^{-1}K(hg^{-1}h^{-1}m,m)\bigr) \, dm \, d(hZ),$$

when defined and convergent.

Special cases:

• If G and M are compact, then

$$\operatorname{Tr}_{g}^{\flat}(T) = \operatorname{Tr}^{\flat}(g \circ T).$$

If K is smooth, then we recover the orbital integral trace

$$\operatorname{Tr}_{g}^{\flat}(T) = \operatorname{Tr}_{g}(T),$$

used in various places.

An expression for the equivariant Ruelle ζ -function

Theorem (H-Saratchandran, 2023)

If φ is g-nondegenerate and Re(z) is large,

$$R_{arphi,
abla^F}^g(z) = \exp\left(-rac{1}{2}\int_{\mathbb{R}\setminus\{0\}} \operatorname{Tr}_g^{\flat}\left((-1)^N N\Phi_t^*
ight) rac{e^{-|t|z}}{|t|} \, dt
ight).$$

This follows from an equivariant generalisation of Guillemin's trace formula.

An expression for the equivariant Ruelle ζ -function

Theorem (H-Saratchandran, 2023)

If φ is g-nondegenerate and Re(z) is large,

$$R_{arphi,
abla^F}^{oldsymbol{g}}(z) = \exp\left(-rac{1}{2}\int_{\mathbb{R}\setminus\{0\}} \operatorname{Tr}_{oldsymbol{g}}^{oldsymbol{b}}\left((-1)^N N\Phi_t^*
ight) rac{e^{-|t|z}}{|t|} \, dt
ight).$$

This follows from an equivariant generalisation of Guillemin's trace formula.

Corollaries:

- \bullet independence of $R_{\varphi,\nabla^F}^{\mathbf{g}}$ of χ and I_{γ}
- decomposition of the classical Ruelle ζ -function in terms of conjugacy classes in the fundamental group.

IV An equivariant Fried conjecture

The Fried conjecture

Suppose that M is compact, oriented, and Riemanian. Let $\Delta_F := (\nabla^F)^* \nabla^F + \nabla^F (\nabla^F)^*$.

Definition (Ray-Singer, 1971)

The **analytic torsion** of M, twisted by ∇^F , is

$$T_{
abla^F}(M) := \exp\left(-rac{1}{2} \left.rac{d}{ds}
ight|_{s=0} \mathrm{Tr}\left((-1)^N \mathcal{N}(\Delta_F|_{\ker(\Delta_F)^{\perp}})^{-s}
ight)
ight).$$

The Fried conjecture

Suppose that M is compact, oriented, and Riemanian. Let $\Delta_F := (\nabla^F)^* \nabla^F + \nabla^F (\nabla^F)^*$.

Definition (Ray-Singer, 1971)

The **analytic torsion** of M, twisted by ∇^F , is

$$T_{
abla^F}(M) := \exp\left(-rac{1}{2} \left.rac{d}{ds}
ight|_{s=0} \mathrm{Tr}\left((-1)^N \mathcal{N}(\Delta_F|_{\ker(\Delta_F)^\perp})^{-s}
ight)
ight).$$

Conjecture (Fried, 1987)

If $\ker(\Delta_F)=0$, then for a large class of flows, $R_{\varphi,\nabla^F}(z)$ extends to z=0 and

$$T_{\nabla^F}(M) = |R_{\varphi,\nabla^F}(0)|.$$

Peter Hochs (Radboud)

The Fried conjecture

Suppose that M is compact, oriented, and Riemanian. Let $\Delta_F := (\nabla^F)^* \nabla^F + \nabla^F (\nabla^F)^*$.

Definition (Ray-Singer, 1971)

The **analytic torsion** of M, twisted by ∇^F , is

$$\mathcal{T}_{
abla^F}(M) := \exp\left(-rac{1}{2} \left. rac{d}{ds}
ight|_{s=0} \mathrm{Tr}\left((-1)^N \mathcal{N}(\Delta_F|_{\ker(\Delta_F)^{\perp}})^{-s}
ight)
ight).$$

Conjecture (Fried, 1987)

If $\ker(\Delta_F)=0$, then for a large class of flows, $R_{\varphi,\nabla^F}(z)$ extends to z=0 and

$$T_{\nabla^F}(M) = |R_{\varphi,\nabla^F}(0)|.$$

Proved in various cases by Bismut, Dang-Guillarmou-Rivière-Shen, Fried, Moscovici-Stanton, Müller, Sànchez-Morgado, Shen, Shen-Yu, Spilioti, Wotzke, Yamaguchi, . . .

An equivariant Fried conjecture

We can define **equivariant analytic torsion** $T_{\nabla F}^g(M)$ if M/G is compact, by replacing the operator trace by Tr_g . (Studied by Bismut, Bismut–Goette, Deitmar, Köhler, Lott, Lott–Rothenberg, Lück, for compact G; Lott, Mathai, H-Saratchandran, for noncompact G.)

An equivariant Fried conjecture

We can define **equivariant analytic torsion** $T_{\nabla^F}^g(M)$ if M/G is compact, by replacing the operator trace by Tr_g . (Studied by Bismut, Bismut–Goette, Deitmar, Köhler, Lott, Lott–Rothenberg, Lück, for compact G; Lott, Mathai, H-Saratchandran, for noncompact G.)

Question (Equivariant Fried problem/conjecture)

If $\dim(M)$ is odd and $\ker_{L^2}(\Delta_F) = 0$, under what further conditions is

$$T_{\nabla^F}^g(M) = R_{\varphi,\nabla^F}^g(0)$$
?

An equivariant Fried conjecture

We can define **equivariant analytic torsion** $T_{\nabla^F}^g(M)$ if M/G is compact, by replacing the operator trace by Tr_g . (Studied by Bismut, Bismut–Goette, Deitmar, Köhler, Lott, Lott–Rothenberg, Lück, for compact G; Lott, Mathai, H-Saratchandran, for noncompact G.)

Question (Equivariant Fried problem/conjecture)

If $\dim(M)$ is odd and $\ker_{L^2}(\Delta_F) = 0$, under what further conditions is

$$T_{\nabla^F}^g(M) = R_{\varphi,\nabla^F}^g(0)$$
?

- We don't need an absolute value now, because we allow l < 0.
- If dim(M) is even, then $T_{\nabla^F}^g(M)=1$, whereas $R_{\varphi,\nabla^F}^g(0)$ may be different from 1.

A non-example

For the lift to the universal cover of geodesic flow on the sphere bundle of a compact Riemannian manifold, then the equivariant Fried conjecture does **not** hold.

A non-example

For the lift to the universal cover of geodesic flow on the sphere bundle of a compact Riemannian manifold, then the equivariant Fried conjecture does **not** hold.

Already in Fried's original result for hyperbolic manifolds,

$$T^{e}_{\nabla^F}(M) \neq 1 = R^{e}_{\varphi,\nabla^F}(0).$$

But Fried proved that (up to regularisation)

$$T_{\nabla^F}(M) = \prod_{(g)} T_{\nabla^F}^g(M) = \prod_{(g)} R_{\varphi,\nabla^F}^g(0) = |R_{\varphi,\nabla^F}(0)|.$$

The circle

For the circle acting on itself, we saw

$$R_{\varphi,\nabla^F}^g(z) = \exp\left(\frac{1}{2}\sum_{n\in\mathbb{Z}}\frac{e^{-|n+r|z+i\alpha(n+r)}}{|n+r|}\right).$$

Now

$$T_{\nabla^F}^g(M) = \exp\left(\frac{1}{2}\sum_{n\in\mathbb{Z}}\frac{e^{i\alpha(n+r)}}{|n+r|}\right) = R_{\varphi,\nabla^F}^g(0).$$

The line

For the real line acting on itself, we saw

$$R_{\varphi,\nabla^F}^g(z) = \exp\left(rac{1}{2}rac{e^{-|g|z+ilpha g}}{|g|}
ight).$$

Now

$$T_{
abla^F}^{g}(M) = \exp\left(rac{1}{2}rac{e^{ilpha g}}{|g|}
ight) = R_{arphi,
abla^F}^{g}(0).$$

Geodesic flow in \mathbb{R}^n

For geodesic flow on $S(T\mathbb{R}^n)$, acted on by a discrete subgroup of the Euclidean motion group, we have for certain g,

$$T_{\nabla^F}^g(M) = R_{\varphi,\nabla^F}^g(0).$$

Geodesic flow in \mathbb{R}^n

For geodesic flow on $S(T\mathbb{R}^n)$, acted on by a discrete subgroup of the Euclidean motion group, we have for certain g,

$$T_{\nabla^F}^{\mathsf{g}}(M) = R_{\varphi,\nabla^F}^{\mathsf{g}}(0).$$

Now the classical Ruelle ζ -function is not defined, because there are no closed geodesics.

Geodesic flow on spheres

For geodesic flow on $M = S(TS^n)$, acted on by G = SO(n+1), and g regular, and the trivial connection d on $M \times \mathbb{C}$,

- $L_g(\varphi)$ is countable
- the flow is g-nondegenerate
- ullet we can compute $R^{\mathbf{g}}_{arphi,
 abla^{\mathbf{F}}}(z)$,

at least for n = 2 and n = 3.

Geodesic flow on spheres

For geodesic flow on $M = S(TS^n)$, acted on by G = SO(n+1), and g regular, and the trivial connection d on $M \times \mathbb{C}$,

- $L_g(\varphi)$ is countable
- the flow is g-nondegenerate
- ullet we can compute $R^{\mathbf{g}}_{arphi,
 abla^{\mathbf{F}}}(z)$,

at least for n = 2 and n = 3.

But

- $\ker \Delta_F = H^*(M) \neq 0$
- R_{φ,∇^F}^g does not extend to zero.

So the conditions of the equivariant Fried conjecture do not hold.

Geodesic flow on spheres

For geodesic flow on $M = S(TS^n)$, acted on by G = SO(n+1), and g regular, and the trivial connection d on $M \times \mathbb{C}$,

- $L_g(\varphi)$ is countable
- the flow is g-nondegenerate
- we can compute $R_{\varphi,\nabla^F}^g(z)$,

at least for n = 2 and n = 3.

But

- $\ker \Delta_F = H^*(M) \neq 0$
- $R_{\varphi,\nabla^F}^{\mathcal{S}}$ does not extend to zero.

So the conditions of the equivariant Fried conjecture do not hold.

Now the classical Ruelle ζ -function is not defined, because there are uncountably many closed geodesics.

A superficial similarity

Modulo suitable regularisation and interpretation,

$$\text{``}R_{\varphi,\nabla^{\digamma}}^{g}(0)=\exp\left(-\frac{1}{2}\int_{\mathbb{R}\setminus\{0\}}\operatorname{Tr}_{g}^{\flat}\left((-1)^{N}N\Phi_{t}^{*}\right)\frac{1}{|t|}\,dt\right)\text{''},$$

and

"
$$T_{\nabla^F}^g(M) = \exp\left(-\frac{1}{2}\int_0^\infty \operatorname{Tr}_g\left((-1)^N N e^{-t\Delta_F}\right) \frac{1}{t} dt\right)$$
".

Thank you