Helton-Howe Trace, Connes-Chern Character, and Quantization

Xiang Tang

Washington University in St. Louis

March 7, 2023

In this talk, we will report our recent study of the Helton-Howe trace and the Connes-Chern character for Toeplitz operators on weighted Bergman spaces. We will present a proof of the Helton-Howe trace and its generalizations via the idea of Toeplitz quantization.

In this talk, we will report our recent study of the Helton-Howe trace and the Connes-Chern character for Toeplitz operators on weighted Bergman spaces. We will present a proof of the Helton-Howe trace and its generalizations via the idea of Toeplitz quantization.

Plan :

In this talk, we will report our recent study of the Helton-Howe trace and the Connes-Chern character for Toeplitz operators on weighted Bergman spaces. We will present a proof of the Helton-Howe trace and its generalizations via the idea of Toeplitz quantization.

Plan :

1 Toeplitz operators and the Helton-Howe trace formula

In this talk, we will report our recent study of the Helton-Howe trace and the Connes-Chern character for Toeplitz operators on weighted Bergman spaces. We will present a proof of the Helton-Howe trace and its generalizations via the idea of Toeplitz quantization.

Plan :

- **9** Toeplitz operators and the Helton-Howe trace formula
- 2 The Connes-Chern character

In this talk, we will report our recent study of the Helton-Howe trace and the Connes-Chern character for Toeplitz operators on weighted Bergman spaces. We will present a proof of the Helton-Howe trace and its generalizations via the idea of Toeplitz quantization.

Plan :

- **9** Toeplitz operators and the Helton-Howe trace formula
- 2 The Connes-Chern character
- **③** Toeplitz quantization and trace formulas

This talk is based on joint work with Yi Wang and Dechao Zheng.

My collaborators

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} .

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2(\mathbb{D})$ be the Hilbert space of square integrable functions on \mathbb{D} with respect to the Lebesgue measure and $L^2_a(\mathbb{D})$ be the closed subspace of square integrable analytic functions.

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2(\mathbb{D})$ be the Hilbert space of square integrable functions on \mathbb{D} with respect to the Lebesgue measure and $L^2_a(\mathbb{D})$ be the closed subspace of square integrable analytic functions. Let $\mathcal{P}: L^2(\mathbb{D}) \to L^2_a(\mathbb{D})$ be the orthogonal projection onto $L^2_a(\mathbb{D})$, and f be the continuous function on $\overline{\mathbb{D}}$.

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2(\mathbb{D})$ be the Hilbert space of square integrable functions on \mathbb{D} with respect to the Lebesgue measure and $L^2_a(\mathbb{D})$ be the closed subspace of square integrable analytic functions. Let $\mathcal{P}: L^2(\mathbb{D}) \to L^2_a(\mathbb{D})$ be the orthogonal projection onto $L^2_a(\mathbb{D})$, and f be the continuous function on $\overline{\mathbb{D}}$. Consider the Toeplitz operator $T_f: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ by

$$T_f(\xi) := \mathcal{P}(f\xi).$$

Unit disk

Let \mathbb{D} be the unit disk in the complex plane \mathbb{C} . Let $L^2(\mathbb{D})$ be the Hilbert space of square integrable functions on \mathbb{D} with respect to the Lebesgue measure and $L^2_a(\mathbb{D})$ be the closed subspace of square integrable analytic functions. Let $\mathcal{P}: L^2(\mathbb{D}) \to L^2_a(\mathbb{D})$ be the orthogonal projection onto $L^2_a(\mathbb{D})$, and f be the continuous function on $\overline{\mathbb{D}}$. Consider the Toeplitz operator $T_f: L^2_a(\mathbb{D}) \to L^2_a(\mathbb{D})$ by

$$T_f(\xi) := \mathcal{P}(f\xi).$$

Proposition

The commutator

$$[T_f, T_g]$$

is a compact operator on $L^2_a(\mathbb{D})$.

Extension and K-homology

Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$.

Extension and K-homology

Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$. Let $\mathcal{T}(\mathbb{D})$ be the unital C^* -algebra generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$.

Extension and K-homology

Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$. Let $\mathcal{T}(\mathbb{D})$ be the unital C^* -algebra generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$. Let $C(S^1)$ be the algebra of continuous functions on $S^1 = \partial \mathbb{D}$. Extension and K-homology

Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$. Let $\mathcal{T}(\mathbb{D})$ be the unital C^* -algebra generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$. Let $C(S^1)$ be the algebra of continuous functions on $S^1 = \partial \mathbb{D}$.

We have the following short exact sequence of C^* -algebras,

$$0 \longrightarrow \mathcal{K}(L^2_a(\mathbb{D})) \longrightarrow \mathcal{T}(\mathbb{D}) \longrightarrow C(S^1) \longrightarrow 0.$$

Extension and K-homology

Let $\mathcal{K}(L^2_a(\mathbb{D}))$ be the algebra of compact operators on $L^2_a(\mathbb{D})$. Let $\mathcal{T}(\mathbb{D})$ be the unital C^* -algebra generated by T_z and $\mathcal{K}(L^2_a(\mathbb{D}))$. Let $C(S^1)$ be the algebra of continuous functions on $S^1 = \partial \mathbb{D}$. We have the following short exact sequence of C^* -algebras,

$$0 \longrightarrow \mathcal{K}(L^2_a(\mathbb{D})) \longrightarrow \mathcal{T}(\mathbb{D}) \longrightarrow C(S^1) \longrightarrow 0.$$

In the Brown-Douglas-Fillmore theory, the above extension defines a K-homology class $[\mathcal{T}(\mathbb{D})]$ in $K_1(S^1)$.

Theorem

In $K_1(S^1)$, $[\mathcal{T}(\mathbb{D})] = [\frac{1}{i} \frac{d}{d\theta}].$

A direct calculation shows that the commutator $[T_z, T_z^*]$ is a trace class operator on $L^2_a(\mathbb{D})$. And this property extends to all $f, g \in C^{\infty}(\overline{\mathbb{D}})$.

A direct calculation shows that the commutator $[T_z, T_z^*]$ is a trace class operator on $L^2_a(\mathbb{D})$. And this property extends to all $f, g \in C^{\infty}(\overline{\mathbb{D}})$. The commutator $[T_f, T_g]$ is a trace class operator.

A direct calculation shows that the commutator $[T_z, T_z^*]$ is a trace class operator on $L_a^2(\mathbb{D})$. And this property extends to all $f, g \in C^{\infty}(\overline{\mathbb{D}})$. The commutator $[T_f, T_g]$ is a trace class operator.

Theorem (Helton-Howe)

For $f,g \in C^{\infty}(\overline{\mathbb{D}}),$ $\operatorname{tr}\left([T_f,T_g]\right) = \frac{1}{2\pi i} \int_{\mathbb{D}} \mathrm{d}f \wedge \mathrm{d}g.$

A direct calculation shows that the commutator $[T_z, T_z^*]$ is a trace class operator on $L^2_a(\mathbb{D})$. And this property extends to all $f, g \in C^{\infty}(\overline{\mathbb{D}})$. The commutator $[T_f, T_g]$ is a trace class operator.

Theorem (Helton-Howe)

For $f, g \in C^{\infty}(\overline{\mathbb{D}})$, tr $([T_f, T_g]) = \frac{1}{2\pi i} \int_{\mathbb{D}} \mathrm{d}f \wedge \mathrm{d}g$.

This result is deeply connected to the Pincus function for a pair of noncommuting selfadjoint operators.

Weighted Bergman space

Consider the probability measure $d\lambda_t(z)$ (t > -1) on \mathbb{D} :

$$\mathrm{d}\lambda_t(z) = \frac{t+1}{\pi} (1-|z|^2)^t \mathrm{d}x \mathrm{d}y.$$

Weighted Bergman space

Consider the probability measure $d\lambda_t(z)$ (t > -1) on \mathbb{D} :

$$\mathrm{d}\lambda_t(z) = \frac{t+1}{\pi} (1-|z|^2)^t \mathrm{d}x \mathrm{d}y.$$

Let $L^2(\mathbb{D}, \lambda_t)$ be the Hilbert space of square integrable functions on \mathbb{D} with respect to the measure $d\lambda_t$ and $L^2_{a,t}(\mathbb{D})$ be the closed subspace of square integrable analytic functions.

Weighted Bergman space

Consider the probability measure $d\lambda_t(z)$ (t > -1) on \mathbb{D} :

$$\mathrm{d}\lambda_t(z) = \frac{t+1}{\pi} (1-|z|^2)^t \mathrm{d}x \mathrm{d}y.$$

Let $L^2(\mathbb{D}, \lambda_t)$ be the Hilbert space of square integrable functions on \mathbb{D} with respect to the measure $d\lambda_t$ and $L^2_{a,t}(\mathbb{D})$ be the closed subspace of square integrable analytic functions.

Let $\mathcal{P}^{(t)}: L^2(\mathbb{D}, \lambda_t) \to L^2_{a,t}(\mathbb{D})$ be the orthogonal projection onto $L^2_{a,t}(\mathbb{D})$, and f be the continuous function on $\overline{\mathbb{D}}$.

Weighted Bergman space

Consider the probability measure $d\lambda_t(z)$ (t > -1) on \mathbb{D} :

$$\mathrm{d}\lambda_t(z) = \frac{t+1}{\pi} (1-|z|^2)^t \mathrm{d}x \mathrm{d}y.$$

Let $L^2(\mathbb{D}, \lambda_t)$ be the Hilbert space of square integrable functions on \mathbb{D} with respect to the measure $d\lambda_t$ and $L^2_{a,t}(\mathbb{D})$ be the closed subspace of square integrable analytic functions.

Let $\mathcal{P}^{(t)}: L^2(\mathbb{D}, \lambda_t) \to L^2_{a,t}(\mathbb{D})$ be the orthogonal projection onto $L^2_{a,t}(\mathbb{D})$, and f be the continuous function on $\overline{\mathbb{D}}$.

Consider the Toeplitz operator $T_f^{(t)}:L^2_{a,t}(\mathbb{D})\to L^2_{a,t}(\mathbb{D})$ by

$$T_f^{(t)}(\xi) := \mathcal{P}^{(t)}(f\xi).$$

Dependence on t

For $f, g \in C^{\infty}(\overline{\mathbb{D}})$, the commutator is $[T_f^{(t)}, T_g^{(t)}]$ is a trace class operator.

Dependence on t

For $f, g \in C^{\infty}(\overline{\mathbb{D}})$, the commutator is $[T_f^{(t)}, T_g^{(t)}]$ is a trace class operator.

Question

How does $\operatorname{tr}([T_f^{(t)}, T_g^{(t)}])$ change with respect to t?

Dependence on t

For $f, g \in C^{\infty}(\overline{\mathbb{D}})$, the commutator is $[T_f^{(t)}, T_g^{(t)}]$ is a trace class operator.

Question

How does $\operatorname{tr}([T_f^{(t)}, T_g^{(t)}])$ change with respect to t?

If we evaluate the trace on $K_1(C(S^1))$,

$$\operatorname{tr}([T_{e^{in\theta}}^{(t)}, T_{e^{-in\theta}}^{(t)}]) = -n.$$

The question is about the rigidity property at the level of cocycle/cochain instead of "cohomology".

Let \mathbb{B}_n be the unit ball in the complex space \mathbb{C}^n .

Let \mathbb{B}_n be the unit ball in the complex space \mathbb{C}^n . Let dm(z) be the Lebesgue measure on \mathbb{B}_n . For t > -1, consider the probability measure $d\lambda_t$ on \mathbb{B}_n of the form

$$d\lambda_t(z) = \frac{(n-1)!}{\pi^n B(n,t+1)} (1-|z|^2)^t dm(z),$$

where B(n, t+1) is the Beta function.

Let \mathbb{B}_n be the unit ball in the complex space \mathbb{C}^n . Let dm(z) be the Lebesgue measure on \mathbb{B}_n . For t > -1, consider the probability measure $d\lambda_t$ on \mathbb{B}_n of the form

$$d\lambda_t(z) = \frac{(n-1)!}{\pi^n B(n,t+1)} (1-|z|^2)^t dm(z),$$

where B(n, t+1) is the Beta function. The weighted Bergman space $L^2_{a,t}(\mathbb{B}_n)$ is the closed subspace of

 $L^2(\mathbb{B}_n, \lambda_t)$ of square integrable holomorphic functions on \mathbb{B}_n .

Let \mathbb{B}_n be the unit ball in the complex space \mathbb{C}^n . Let dm(z) be the Lebesgue measure on \mathbb{B}_n . For t > -1, consider the probability measure $d\lambda_t$ on \mathbb{B}_n of the form

$$d\lambda_t(z) = \frac{(n-1)!}{\pi^n B(n,t+1)} (1-|z|^2)^t dm(z),$$

where B(n, t + 1) is the Beta function. The weighted Bergman space $L^2_{a,t}(\mathbb{B}_n)$ is the closed subspace of $L^2(\mathbb{B}_n, \lambda_t)$ of square integrable holomorphic functions on \mathbb{B}_n . Let $\mathcal{P}^{(t)}$ be the orthogonal projection from $L^2(\mathbb{B}_n, \lambda_t)$ onto $L^2_{a,t}(\mathbb{B}_n)$. For $f \in C^{\infty}(\overline{\mathbb{B}_n})$, define $T_f^{(t)} : L^2_{a,t}(\mathbb{B}_n) \to L^2_{a,t}(\mathbb{B}_n)$ by

$$T_f^{(t)}(\xi) := \mathcal{P}^{(t)}(f\xi).$$

Helton-Howe trace formula

The commutator $[T_f^{(t)}, T_g^{(t)}]$ is a Schatten-p class operator for p > n.

Helton-Howe trace formula

The commutator $[T_f^{(t)}, T_g^{(t)}]$ is a Schatten-p class operator for p > n.

Helton and Howe considered the full antisymmetrization

$$[T_{f_1}^{(t)}, ..., T_{f_{2n}}^{(t)}] := \sum_{\tau \in S_{2n}} \operatorname{sgn}(\tau) T_{f_{\tau(1)}}^{(t)} T_{f_{\tau(2)}}^{(t)} ... T_{f_{\tau(2n)}}^{(t)}.$$

Helton-Howe trace formula

The commutator $[T_f^{(t)}, T_g^{(t)}]$ is a Schatten-*p* class operator for p > n.

Helton and Howe considered the full antisymmetrization

$$[T_{f_1}^{(t)},...,T_{f_{2n}}^{(t)}] := \sum_{\tau \in S_{2n}} \operatorname{sgn}(\tau) T_{f_{\tau(1)}}^{(t)} T_{f_{\tau(2)}}^{(t)} ... T_{f_{\tau(2n)}}^{(t)}$$

Theorem (Helton-Howe)

The full antisymmetrization $[T_{f_1}^{(0)}, ..., T_{f_{2n}}^{(0)}]$ is a trace class operator, and

Helton-Howe trace formula

The commutator $[T_f^{(t)}, T_g^{(t)}]$ is a Schatten-*p* class operator for p > n.

Helton and Howe considered the full antisymmetrization

$$[T_{f_1}^{(t)},...,T_{f_{2n}}^{(t)}] := \sum_{\tau \in S_{2n}} \operatorname{sgn}(\tau) T_{f_{\tau(1)}}^{(t)} T_{f_{\tau(2)}}^{(t)} ... T_{f_{\tau(2n)}}^{(t)}$$

Theorem (Helton-Howe)

The full antisymmetrization $[T_{f_1}^{(0)}, ..., T_{f_{2n}}^{(0)}]$ is a trace class operator, and

$$\operatorname{tr}\left([T_{f_1}^{(0)},...,T_{f_{2n}}^{(0)}]\right) = \frac{n!}{(2\pi i)^n} \int_{\mathbb{B}_n} \mathrm{d}f_1 \wedge \mathrm{d}f_2 \wedge \cdots \wedge \mathrm{d}f_{2n}.$$
Hochschild cohomology

Let A be an Fréchet algebra over \mathbb{C} .

Hochschild cohomology

Let A be an Fréchet algebra over \mathbb{C} . For $\in \mathbb{N}$, let

$$C^{k}(A)$$
: = Hom_C $(A^{\otimes (k+1)}, \mathbb{C}),$

of all (continuous) (k + 1)-linear functionals on A.

Definition

Define the Hochschild codifferential $\partial \colon C^k(A) \to C^{k+1}(A)$ by

$$\partial \Phi(a_0 \otimes \cdots \otimes a_{k+1})$$

= $\sum_{i=0}^k (-1)^i \Phi(a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_{k+1})$
+ $(-1)^{k+1} \Phi(a_{k+1} a_0 \otimes a_1 \otimes \cdots \otimes a_k).$

Hochschild cohomology

Let A be an Fréchet algebra over \mathbb{C} . For $\in \mathbb{N}$, let

$$C^k(A)$$
: = Hom _{\mathbb{C}} $(A^{\otimes (k+1)}, \mathbb{C}),$

of all (continuous) (k + 1)-linear functionals on A.

Definition

Define the Hochschild codifferential $\partial \colon C^k(A) \to C^{k+1}(A)$ by

$$\partial \Phi(a_0 \otimes \cdots \otimes a_{k+1})$$

= $\sum_{i=0}^k (-1)^i \Phi(a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_{k+1})$
+ $(-1)^{k+1} \Phi(a_{k+1} a_0 \otimes a_1 \otimes \cdots \otimes a_k).$

The Hochschild cohomology of A is the cohomology of the cochain complex $(C^{\bullet}(A), \partial)$.

Definition

A Hochschild cochain $\Phi \in C^k(A)$ is *cyclic* if for all $a_0, \ldots, a_k \in A$,

$$\Phi(a_k, a_0, \dots, a_{k-1}) = (-1)^k \Phi(a_0, a_1, \dots, a_k).$$

Definition

A Hochschild cochain $\Phi \in C^k(A)$ is *cyclic* if for all $a_0, \ldots, a_k \in A$,

$$\Phi(a_k, a_0, \dots, a_{k-1}) = (-1)^k \Phi(a_0, a_1, \dots, a_k).$$

Let $C_{\lambda}^{k}(A)$ be the subspace of $C^{k}(A)$ consisting of cyclic cochains. The cyclic cohomology $HC^{\bullet}(A)$ is defined to be the cohomology of the cochain complex $(C_{\lambda}^{\bullet}(A), \partial)$.

Definition

A Hochschild cochain $\Phi \in C^k(A)$ is *cyclic* if for all $a_0, \ldots, a_k \in A$,

$$\Phi(a_k, a_0, \dots, a_{k-1}) = (-1)^k \Phi(a_0, a_1, \dots, a_k).$$

Let $C^k_{\lambda}(A)$ be the subspace of $C^k(A)$ consisting of cyclic cochains. The cyclic cohomology $HC^{\bullet}(A)$ is defined to be the cohomology of the cochain complex $(C^{\bullet}_{\lambda}(A), \partial)$.

Theorem (Connes-Hochschild-Kostant-Rosenberg)

$$HH^{\bullet}(C^{\infty}(M)) = \mathcal{D}^{deRham}_{\bullet}(M), \ HP^{\bullet}(C^{\infty}(M)) = H^{deRham}_{\bullet}(M).$$

Definition

A Hochschild cochain $\Phi \in C^k(A)$ is *cyclic* if for all $a_0, \ldots, a_k \in A$,

$$\Phi(a_k, a_0, \dots, a_{k-1}) = (-1)^k \Phi(a_0, a_1, \dots, a_k).$$

Let $C^k_{\lambda}(A)$ be the subspace of $C^k(A)$ consisting of cyclic cochains. The cyclic cohomology $HC^{\bullet}(A)$ is defined to be the cohomology of the cochain complex $(C^{\bullet}_{\lambda}(A), \partial)$.

Theorem (Connes-Hochschild-Kostant-Rosenberg)

$$HH^{\bullet}(C^{\infty}(M)) = \mathcal{D}^{deRham}_{\bullet}(M), \ HP^{\bullet}(C^{\infty}(M)) = H^{deRham}_{\bullet}(M).$$

Cyclic cohomology pairs naturally with K-theory of an algebra.

The Connes-Chern character

Connes introduced a remarkable generalization of the Helton-Howe trace using the Connes-Chern character for *p*-summable Fredholm modules using cyclic theory.

The Connes-Chern character

Connes introduced a remarkable generalization of the Helton-Howe trace using the Connes-Chern character for p-summable Fredholm modules using cyclic theory. For $f, g \in C^{\infty}(\overline{\mathbb{B}_n})$, define

$$\sigma_t(f,g) = T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}.$$

The Connes-Chern character

Connes introduced a remarkable generalization of the Helton-Howe trace using the Connes-Chern character for p-summable Fredholm modules using cyclic theory. For $f, g \in C^{\infty}(\overline{\mathbb{B}_n})$, define

$$\sigma_t(f,g) = T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}.$$

For p > n, define

$$\tau_t(f_0, \cdots, f_{2p-1}) := \operatorname{tr} \left(\sigma_t(f_0, f_1) \cdots \sigma_t(f_{2p-2}, f_{2p-1}) \right) \\ - \operatorname{tr} \left(\sigma_t(f_1, f_2) \cdots \sigma_t(f_{2p-1}, f_0) \right).$$

The Connes-Chern character

Connes introduced a remarkable generalization of the Helton-Howe trace using the Connes-Chern character for p-summable Fredholm modules using cyclic theory. For $f, g \in C^{\infty}(\overline{\mathbb{B}_n})$, define

$$\sigma_t(f,g) = T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}.$$

For p > n, define

$$\tau_t(f_0, \cdots, f_{2p-1}) := \operatorname{tr} \left(\sigma_t(f_0, f_1) \cdots \sigma_t(f_{2p-2}, f_{2p-1}) \right) \\ - \operatorname{tr} \left(\sigma_t(f_1, f_2) \cdots \sigma_t(f_{2p-1}, f_0) \right).$$

Up to a constant c, τ_t is the Connes-Chern character for the Schatten-p extension,

$$0 \longrightarrow \mathcal{S}_p \longrightarrow \mathcal{E} \to C^{\infty}(\partial \overline{\mathbb{B}_n}) \longrightarrow 0,$$

with $c = (-1)^{p-1} (2i\pi)^p (p - \frac{1}{2}) \cdots (\frac{3}{2})(\frac{1}{2}).$

Cyclic cocycle

Theorem (Connes)

The functional τ_t satisfies the following properties.

1)
$$\tau_t(f_1, \cdots, f_{2p-1}, f_0) = -\tau_t(f_0, f_1, \cdots, f_{2p-1})$$

2) $\tau_t(f_0f_1, f_2, \cdots, f_{2p}) - \tau_t(f_0, f_1f_2, \cdots, f_{2p}) + \tau_t(f_0, f_1, f_2f_3, \cdots, f_{2p}) + \cdots + \tau_t(f_{2p}f_0, f_1, \cdots, f_{2p-1}) = 0.$

In general, Connes introduced cyclic cohomology as the receptacle of the Connes-Chern character of a Fredholm module.

Cyclic cocycle

Theorem (Connes)

The functional τ_t satisfies the following properties.

1)
$$\tau_t(f_1, \cdots, f_{2p-1}, f_0) = -\tau_t(f_0, f_1, \cdots, f_{2p-1})$$

2) $\tau_t(f_0f_1, f_2, \cdots, f_{2p}) - \tau_t(f_0, f_1f_2, \cdots, f_{2p}) + \tau_t(f_0, f_1, f_2f_3, \cdots, f_{2p}) + \cdots + \tau_t(f_{2p}f_0, f_1, \cdots, f_{2p-1}) = 0.$

In general, Connes introduced cyclic cohomology as the receptacle of the Connes-Chern character of a Fredholm module.

Remark

The Helton-Howe trace tr $([T_{f_1}^{(0)}, ..., T_{f_{2n}}^{(0)}])$ defines a cyclic cocycle on $C^{\infty}(S^{2n-1})$.

Our questions

In this project, we are interested in answering the following questions.

Our questions

In this project, we are interested in answering the following questions.

• Compute the explicit formula for the trace of the full antisymmetrization $[T_{f_1}^{(t)}, ..., T_{f_{2n}}^{(t)}]$. i.e.

$$\operatorname{tr}([T_{f_1}^{(t)}, ..., T_{f_{2n}}^{(t)}])?$$

Does it depend on t?

Our questions

In this project, we are interested in answering the following questions.

• Compute the explicit formula for the trace of the full antisymmetrization $[T_{f_1}^{(t)}, ..., T_{f_{2n}}^{(t)}]$. i.e.

$$\operatorname{tr}([T_{f_1}^{(t)}, ..., T_{f_{2n}}^{(t)}])?$$

Does it depend on t?

2 Recall

$$\tau_t(f_0, \cdots, f_{2p-1}) := \operatorname{tr} \left(\sigma_t(f_0, f_1) \cdots \sigma_t(f_{2p-2}, f_{2p-1}) \right) \\ - \operatorname{tr} \left(\sigma_t(f_1, f_2) \cdots \sigma_t(f_{2p-1}, f_0) \right).$$

Compute the local expression of τ_t by taking the limit $t \to \infty$.

The semicommutator

Recall that in the Connes-Chern character, the key ingredient is the semicommutator $\sigma_t(f, g)$,

$$\sigma_t(f,g) = T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}.$$

The semicommutator

Recall that in the Connes-Chern character, the key ingredient is the semicommutator $\sigma_t(f, g)$,

$$\sigma_t(f,g) = T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}.$$

The property of $\sigma_t(f,g)$ as t varies is deeply connected to quantization.

The semicommutator

Recall that in the Connes-Chern character, the key ingredient is the semicommutator $\sigma_t(f, g)$,

$$\sigma_t(f,g) = T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}.$$

The property of $\sigma_t(f,g)$ as t varies is deeply connected to quantization.

$$T^{(t)}: C^{\infty}(\overline{\mathbb{B}_n}) \to B(L^2_{a,t}(\mathbb{B}_n)).$$

Asymptotic expansion

In quantization, the following asymptotic expansion formula has been established.

$$||T_f^{(t)}T_g^{(t)} - \sum_{j=0}^k t^{-j}T_{C_j(f,g)}^{(t)}||_{B(L^2_{a,t})} = O(t^{-k-1}), \ t \to \infty,$$

where C_j is a bilinear differential operator on $C^{\infty}(\overline{\mathbb{B}_n})$ and C_1 is the "half" Poisson structure associated to the symplectic form ω , i.e.

Asymptotic expansion

In quantization, the following asymptotic expansion formula has been established.

$$||T_f^{(t)}T_g^{(t)} - \sum_{j=0}^k t^{-j}T_{C_j(f,g)}^{(t)}||_{B(L^2_{a,t})} = O(t^{-k-1}), \ t \to \infty,$$

where C_j is a bilinear differential operator on $C^{\infty}(\overline{\mathbb{B}_n})$ and C_1 is the "half" Poisson structure associated to the symplectic form ω , i.e.

$$C_{1}(f,g) = -i(1-|z|^{2}) \left[\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} \frac{\partial g}{\partial \bar{z}_{j}} - \left(\sum_{j} \bar{z}_{j} \frac{\partial f}{\partial z_{j}}\right) \left(\sum_{j'} z_{j'} \frac{\partial g}{\partial \bar{z}_{j'}}\right) \right]$$

Asymptotic expansion

In quantization, the following asymptotic expansion formula has been established.

$$||T_f^{(t)}T_g^{(t)} - \sum_{j=0}^k t^{-j}T_{C_j(f,g)}^{(t)}||_{B(L^2_{a,t})} = O(t^{-k-1}), \ t \to \infty,$$

where C_j is a bilinear differential operator on $C^{\infty}(\overline{\mathbb{B}_n})$ and C_1 is the "half" Poisson structure associated to the symplectic form ω , i.e.

$$C_{1}(f,g) = -i(1-|z|^{2}) \left[\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} \frac{\partial g}{\partial \bar{z}_{j}} - \left(\sum_{j} \bar{z}_{j} \frac{\partial f}{\partial z_{j}}\right) \left(\sum_{j'} z_{j'} \frac{\partial g}{\partial \bar{z}_{j'}}\right) \right]$$

Toeplitz quantization is well studied in literature by the contribution of many authors.

Expansion in Schatten-p norm I

For our study of the trace formula, we need to estimate Schatten-p norm of the asymptotic expansion formula.

Expansion in Schatten-p norm I

For our study of the trace formula, we need to estimate Schatten-p norm of the asymptotic expansion formula.

Proposition (T-Wang-Zheng)

Suppose t > -1, k is a non-negative integer and $\forall f, g \in \mathscr{C}^{k+1}(\overline{\mathbb{B}_n})$. Then we have the decomposition

$$T_f^{(t)}T_g^{(t)} = \sum_{l=0}^k c_{l,t}T_{C_l(f,g)}^{(t)} + R_{f,g,k+1}^{(t)}.$$

For any t > -1 and $k \ge 0$, the following hold. (i) If n > 1 then $R_{f,g,k+1}^{(t)} \in \mathcal{S}^p$ for any p > n. (ii) If n = 1 then $R_{f,g,k+1}^{(t)} \in \mathcal{S}^1$.

Expansion in Schatten-p norm II

For t large enough, we have

Expansion in Schatten-p norm II

For t large enough, we have

(a)

 $c_{l,t} \approx_l t^{-l};$

Expansion in Schatten-p norm II

For t large enough, we have

 $c_{l,t} \approx_l t^{-l};$

(b)

(a)

$$||R_{f,g,k+1}^{(t)}|| \lesssim_k t^{-k-1};$$

Expansion in Schatten-p norm II

For t large enough, we have (a)

$$c_{l,t} \approx_l t^{-l};$$

(b)

$$||R_{f,g,k+1}^{(t)}|| \lesssim_k t^{-k-1};$$

(c) for any p > n,

$$||R_{f,g,k+1}^{(t)}||_{\mathcal{S}^p} \lesssim_{k,p} t^{-k-1+\frac{n}{p}};$$

Expansion in Schatten-p norm II

For t large enough, we have (a)

$$c_{l,t} \approx_l t^{-l};$$

(b)

$$||R_{f,g,k+1}^{(t)}|| \lesssim_k t^{-k-1};$$

(c) for any p>n, $\|R_{f,g,k+1}^{(t)}\|_{\mathcal{S}^p}\lesssim_{k,p}t^{-k-1+\frac{n}{p}};$

(d) if n = 1, then for any $p \ge 1$, $\|R_{f,g,k+1}^{(t)}\|_{\mathcal{S}^p} \lesssim_{k,p} t^{-k-1+\frac{n}{p}}.$

The case of unit disk

Let's start with the 1-dim case. Using the previous expansion formula, we can compute the trace of the semicommutator $\sigma_t(f,g) := T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}$ on $L^2_{a,t}(\mathbb{D})$.

The case of unit disk

Let's start with the 1-dim case. Using the previous expansion formula, we can compute the trace of the semicommutator $\sigma_t(f,g) := T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}$ on $L^2_{a,t}(\mathbb{D})$.

Theorem (T-Wang-Zheng)

$$\begin{split} \operatorname{tr}\left(T_{f}^{(t)}T_{g}^{(t)}-T_{fg}^{(t)}\right) &= \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g\\ &+ \int_{\mathbb{D}^{2}}\rho_{t}(|\varphi_{z}(w)|^{2})\Delta f(z)\Delta g(w)\mathrm{d}m(z,w), \end{split}$$

where ρ_t is a strictly positive function on (0,1).

The case of unit disk

Let's start with the 1-dim case. Using the previous expansion formula, we can compute the trace of the semicommutator $\sigma_t(f,g) := T_f^{(t)} T_g^{(t)} - T_{fg}^{(t)}$ on $L^2_{a,t}(\mathbb{D})$.

Theorem (T-Wang-Zheng)

$$\begin{split} \operatorname{tr}\left(T_{f}^{(t)}T_{g}^{(t)}-T_{fg}^{(t)}\right) &= \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g\\ &+ \int_{\mathbb{D}^{2}}\rho_{t}(|\varphi_{z}(w)|^{2})\Delta f(z)\Delta g(w)\mathrm{d}m(z,w), \end{split}$$

where ρ_t is a strictly positive function on (0,1).

Corollary

$$\operatorname{tr}[T_f^{(t)}, T_g^{(t)}] = \frac{1}{2\pi i} \int_{\mathbb{D}} \mathrm{d}f \wedge \mathrm{d}g.$$

Hankel operator

Let $L^2_{a,t,-}(\mathbb{B}_n)$ be the orthogonal complement to $L^2_{a,t}(\mathbb{B}_n)$ in $L^2(\mathbb{B}_n, \lambda_t)$.

Hankel operator

Let $L^2_{a,t,-}(\mathbb{B}_n)$ be the orthogonal complement to $L^2_{a,t}(\mathbb{B}_n)$ in $L^2(\mathbb{B}_n, \lambda_t)$. The Hankel operator $H^{(t)}_f : L^2_{a,t}(\mathbb{B}_n) \to L^2_{a,t,-}(\mathbb{B}_n)$ is defined by

$$H_g^{(t)}\xi = (1 - \mathcal{P}^{(t)})(g\xi).$$

Hankel operator

Let $L^2_{a,t,-}(\mathbb{B}_n)$ be the orthogonal complement to $L^2_{a,t}(\mathbb{B}_n)$ in $L^2(\mathbb{B}_n, \lambda_t)$. The Hankel operator $H^{(t)}_f : L^2_{a,t}(\mathbb{B}_n) \to L^2_{a,t,-}(\mathbb{B}_n)$ is defined by

$$H_g^{(t)}\xi = (1 - \mathcal{P}^{(t)})(g\xi).$$

We have

$$\operatorname{tr}(T_f^{(t)}T_g^{(t)} - T_{fg}^{(t)}) = -\operatorname{tr}(H_{\bar{f}}^{(t)*}H_g^{(t)}) = -\langle H_g^t, H_{\bar{f}}^{(t)} \rangle_{\mathcal{S}^2},$$

Hankel operator

Let $L^2_{a,t,-}(\mathbb{B}_n)$ be the orthogonal complement to $L^2_{a,t}(\mathbb{B}_n)$ in $L^2(\mathbb{B}_n, \lambda_t)$. The Hankel operator $H^{(t)}_f : L^2_{a,t}(\mathbb{B}_n) \to L^2_{a,t,-}(\mathbb{B}_n)$ is defined by

$$H_g^{(t)}\xi = (1 - \mathcal{P}^{(t)})(g\xi).$$

We have

$$\operatorname{tr}(T_f^{(t)}T_g^{(t)} - T_{fg}^{(t)}) = -\operatorname{tr}(H_{\bar{f}}^{(t)*}H_g^{(t)}) = -\langle H_g^t, H_{\bar{f}}^{(t)} \rangle_{\mathcal{S}^2},$$

Corollary

Suppose t > -1 and $g \in \mathscr{C}^2(\overline{\mathbb{D}})$ is subharmonic in \mathbb{D} . Then

$$\|H_g^{(t)}\|_{\mathcal{S}^2}^2 \le \frac{1}{\pi} \int_{\mathbb{D}} |\bar{\partial}g|^2 \mathrm{d}m,$$

with equality holds if and only if g is harmonic.
Large *t*-limit (the disk case)

We take the limit of $t \to \infty$ in the following equation.

$$\begin{split} \operatorname{tr}\left(T_{f}^{(t)}T_{g}^{(t)}-T_{fg}^{(t)}\right) &= \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g\\ &+ \int_{\mathbb{D}^{2}}\rho_{t}(|\varphi_{z}(w)|^{2})\Delta f(z)\Delta g(w)\mathrm{d}m(z,w)\\ &\longrightarrow \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g, \ t\to\infty. \end{split}$$

Remark

Large *t*-limit (the disk case)

We take the limit of $t \to \infty$ in the following equation.

$$\begin{split} \operatorname{tr}\left(T_{f}^{(t)}T_{g}^{(t)}-T_{fg}^{(t)}\right) &= \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g\\ &+ \int_{\mathbb{D}^{2}}\rho_{t}(|\varphi_{z}(w)|^{2})\Delta f(z)\Delta g(w)\mathrm{d}m(z,w)\\ &\longrightarrow \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g, \ t\to\infty. \end{split}$$

Remark

• The above formula suggests that in general the Connes-Chern character could depend on t.

Large *t*-limit (the disk case)

We take the limit of $t \to \infty$ in the following equation.

$$\begin{split} \operatorname{tr}\left(T_{f}^{(t)}T_{g}^{(t)}-T_{fg}^{(t)}\right) &= \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g\\ &+ \int_{\mathbb{D}^{2}}\rho_{t}(|\varphi_{z}(w)|^{2})\Delta f(z)\Delta g(w)\mathrm{d}m(z,w)\\ &\longrightarrow \frac{1}{2\pi i}\int_{\mathbb{D}}\partial f\wedge\bar{\partial}g, \ t\to\infty. \end{split}$$

Remark

- The above formula suggests that in general the Connes-Chern character could depend on t.
- The above cochain is not a Hochschild cocycle, but contain interesting information about the holomorphic/complex structure.

High dimensional case

On $\overline{\mathbb{B}_n}$, $\sigma_t(f,g)$ is p summable for p > n.

High dimensional case

On $\overline{\mathbb{B}}_n$, $\sigma_t(f,g)$ is p summable for p > n. Our estimate of $\sigma_t(f,g) = T_f^{(t)}T^{(t)} - T_{fg}^{(t)} = R_{f,g,1}^{(t)}$ states

 $||\sigma_t(f,g)||_{\mathcal{S}^{n+1}} \lesssim t^{-\frac{1}{n+1}}$

High dimensional case

On
$$\overline{\mathbb{B}_n}$$
, $\sigma_t(f,g)$ is p summable for $p > n$. Our estimate of $\sigma_t(f,g) = T_f^{(t)}T^{(t)} - T_{fg}^{(t)} = R_{f,g,1}^{(t)}$ states

$$||\sigma_t(f,g)||_{\mathcal{S}^{n+1}} \lesssim t^{-\frac{1}{n+1}}$$

The Connes-Chern character for p = n + 1 satisfies

$$|\tau_t(f_0,\cdots,f_{2p-1})| \lesssim t^{-1} \longrightarrow 0, \ t \to \infty.$$

High dimensional case

On
$$\overline{\mathbb{B}}_n$$
, $\sigma_t(f,g)$ is p summable for $p > n$. Our estimate of $\sigma_t(f,g) = T_f^{(t)}T^{(t)} - T_{fg}^{(t)} = R_{f,g,1}^{(t)}$ states

$$||\sigma_t(f,g)||_{\mathcal{S}^{n+1}} \lesssim t^{-\frac{1}{n+1}}$$

The Connes-Chern character for p = n + 1 satisfies

$$|\tau_t(f_0,\cdots,f_{2p-1})| \lesssim t^{-1} \longrightarrow 0, \ t \to \infty.$$

This estimate suggests that we consider the case of p = n. However,

$$\sigma_t(z_1, \bar{z}_1) \cdots \sigma_t(z_n, \bar{z}_n) - \sigma_t(\bar{z}_1, z_2) \sigma_t(\bar{z}_2, z_3) \cdots \sigma_t(\bar{z}_n, z_1)$$

is not a trace class operator.

Leading term

For $f, g \in \mathscr{C}^2(\mathbb{B}_n)$, define

$$C_1(f,g) := -i(1-|z|^2) \Big[\sum_{j=1}^n \frac{\partial f}{\partial z_j} \frac{\partial g}{\partial \bar{z}_j} - (\sum_j \bar{z}_j \frac{\partial f}{\partial z_j}) (\sum_{j'} z_{j'} \frac{\partial g}{\partial \bar{z}_{j'}}) \Big].$$

Leading term

For $f, g \in \mathscr{C}^2(\mathbb{B}_n)$, define

$$C_1(f,g) := -i(1-|z|^2) \Big[\sum_{j=1}^n \frac{\partial f}{\partial z_j} \frac{\partial g}{\partial \bar{z}_j} - (\sum_j \bar{z}_j \frac{\partial f}{\partial z_j}) (\sum_{j'} z_{j'} \frac{\partial g}{\partial \bar{z}_{j'}}) \Big].$$

Theorem (T-Wang-Zheng)

When $t \to \infty$, the limit of tr $(\sigma_t(f_1, g_1) \cdots \sigma_t(f_{n+1}, g_{n+1}))$ has the following leading term

$$t^{-1} \operatorname{tr} \left(T_{C_1(f_1,g_1)\cdots C_1(f_{n+1},g_{n+1})}^{(t)} \right) \\\sim \frac{i^n}{\pi^n} \int_{\mathbb{B}_n} \frac{C_1(f_1,g_1)\cdots C_1(f_{n+1},g_{n+1})(z)}{(1-|z|^2)^{n+1}} \mathrm{d}m(z).$$

Partial antisymmetrization

For $f_1, \ldots, f_n, g_1, \ldots, g_n \in L^{\infty}(\overline{B}_n)$ and t > -1, define the following partial anti-symmetric sums.

Partial antisymmetrization

For $f_1, \ldots, f_n, g_1, \ldots, g_n \in L^{\infty}(\overline{B}_n)$ and t > -1, define the following partial anti-symmetric sums.

$$[T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{\text{odd}} = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \sigma_t(f_{\tau(1)}, g_1) \dots \sigma_t(f_{\tau(n)}, g_n),$$
$$[T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{\text{even}} = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \sigma_t(f_1, g_{\tau(1)}) \dots \sigma_t(f_n, g_{\tau(n)}).$$

Partial antisymmetrization

For $f_1, \ldots, f_n, g_1, \ldots, g_n \in L^{\infty}(\overline{B}_n)$ and t > -1, define the following partial anti-symmetric sums.

$$\begin{split} [T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{\text{odd}} \\ &= \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \sigma_t(f_{\tau(1)}, g_1) \dots \sigma_t(f_{\tau(n)}, g_n), \\ [T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{\text{even}} \\ &= \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \sigma_t(f_1, g_{\tau(1)}) \dots \sigma_t(f_n, g_{\tau(n)}). \end{split}$$

Theorem (T-Wang-Zheng)

Suppose
$$t \geq -1$$
 and $f_1, g_1, \ldots, f_n, g_n \in \mathscr{C}^2(\overline{\mathbb{B}_n})$. Then both $[T_{f_1}^{(t)}, T_{g_1}^{(t)}, \ldots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{odd}$ and $[T_{f_1}^{(t)}, T_{g_1}^{(t)}, \ldots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{even}$ are in the trace class.

Large t limit and the Helton-Howe trace

Theorem (T-Wang-Zheng)

For
$$f_1, g_1, \cdots, f_n, g_n \in \mathscr{C}^2(\overline{\mathbb{B}_n})$$
,

$$\lim_{t \to \infty} \operatorname{tr}([T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{odd})$$

=
$$\lim_{t \to \infty} \operatorname{tr}([T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{even})$$

=
$$\frac{1}{(2\pi i)^n} \int_{\mathbb{B}_n} \partial f_1 \wedge \overline{\partial} g_1 \wedge \dots \wedge \partial f_n \wedge \overline{\partial} g_n$$

Large t limit and the Helton-Howe trace

Theorem (T-Wang-Zheng)

For
$$f_1, g_1, \cdots, f_n, g_n \in \mathscr{C}^2(\overline{\mathbb{B}_n})$$
,

$$\lim_{t \to \infty} \operatorname{tr}([T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{odd})$$

=
$$\lim_{t \to \infty} \operatorname{tr}([T_{f_1}^{(t)}, T_{g_1}^{(t)}, \dots, T_{f_n}^{(t)}, T_{g_n}^{(t)}]^{even})$$

=
$$\frac{1}{(2\pi i)^n} \int_{\mathbb{B}_n} \partial f_1 \wedge \overline{\partial} g_1 \wedge \dots \wedge \partial f_n \wedge \overline{\partial} g_n.$$

Theorem (T-Wang-Zheng)

Suppose
$$f_1, f_2, \ldots, f_{2n} \in \mathscr{C}^2(\overline{\mathbb{B}_n})$$
 and $t \geq -1$. Then

$$\operatorname{tr}[T_{f_1}^{(t)}, T_{f_2}^{(t)}, \dots, T_{f_{2n}}^{(t)}] = \frac{n!}{(2\pi i)^n} \int_{\mathbb{B}_n} \mathrm{d}f_1 \wedge \mathrm{d}f_2 \wedge \dots \wedge \mathrm{d}f_{2n}.$$

Remarks about our proofs

Remarks about our proofs

• Instead of using pseudodifferential (Toeplitz) calculus, we need to use harmonic analysis in order to establish the result for \mathscr{C}^2 -functions.

Remarks about our proofs

- Instead of using pseudodifferential (Toeplitz) calculus, we need to use harmonic analysis in order to establish the result for \mathscr{C}^2 -functions.
- The weighted Bergman spaces are deeply connected to representations of the group of biholomorphic transformations of the unit ball \mathbb{B}_n .

Remarks about our proofs

- Instead of using pseudodifferential (Toeplitz) calculus, we need to use harmonic analysis in order to establish the result for \mathscr{C}^2 -functions.
- The weighted Bergman spaces are deeply connected to representations of the group of biholomorphic transformations of the unit ball \mathbb{B}_n .
- The boundary of the unit ball \mathbb{B}_n is a sphere of dimension 2n-1, which carries a canonical contact structure. The analysis we used is linked to the Heisenberg group representation and Heisenberg calculus.

Thank you for your attention!