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The hypoelliptic Laplacian

Definition

e X compact Riemannian manifold.

e If ¥ is an elliptic Laplacian, hypoelliptic Laplacian
deformation of (1% /2. ..

@ ...through a family of non self-adjoint hypoelliptic
operators Ly |;~o acting on total space X of a vector
bundle on X.

e It is a tool to study the elliptic Laplacian.

o If OX = D¥? deformation constructed via
deformation of DX.
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The hypoelliptic Laplacian

Why the hypoelliptic Laplacian

@ The deformation preserves certain spectral invariants
(analytic torsion, eta invariants).

@ In certain cases, the spectrum is fully ‘preserved’.

@ The hypoelliptic Laplacian gives a direct exact
connection of elliptic theory to transport phenomena.

e Applications to real and holomorphic torsion, to
Selberg’s trace formula, to complex geometry.

e Each hypoelliptic Laplacian is specific to the problem
one wants to solve.

e Here, we will concentrate on the trace formula.
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@ X compact Riem. manifold, X total space of T'X.

e H harmonic oscillator along fibers of T'X,

H:;(—Av—l—]Y]Q—n).
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The hypoelliptic Laplacian

The form of the hypoelliptic Laplacian

@ X compact Riem. manifold, X total space of T'X.

e H harmonic oscillator along fibers of T'X,
— 1 \4 2
H_i(—A +|Y[P=n).

e Y generator of geodesic flow vector field on X,

0

H ~ i
YR (@ Y) = 3V o

H .
o L = {f — Y—+ matrix terms of order 0.
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The hypoelliptic Laplacian

The form of the hypoelliptic Laplacian

@ X compact Riem. manifold, X total space of T'X.

e H harmonic oscillator along fibers of T'X,
— 1 \4 2
H_E(—A +|Y[P=n).

e Y generator of geodesic flow vector field on X,

.0
YH (2, V)~ YVi—.
(z.Y) =3 Oxt
o L)X = b% — %—1— matrix terms of order 0.

e L geometric Fokker-Planck operator.
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Euler characteristic and heat equation

The Fuler characteristic

e X compact Riemannian manifold.

e Euler characteristic x (X) =Y (—1)"dim H* (X, R).
e g € Diff (X)) acts on H (X, R).

o Lefschetz number L (g) = Tr,T R [g).
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Euler characteristic and heat equation

The Euler characteristic

X compact Riemannian manifold.

Euler characteristic y (X) = 3 (—1)"dim H’ (X, R).
g € Diff (X) acts on H (X, R).

Lefschetz number L (g) = Tr,™ R [g].

g = 1. Euler characteristic.
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Euler characteristic and heat equation

The heat equation method

° (Q‘ (X,R),d¥ ) de Rham complex, acyclic resolution
of the sheaf of locally constant functions.

e ¢'¥ Riemannian metric, d** formal adjoint of d*,
DX = dX + d** Dirac operator.

o DX2? = {dX,dX*} Hodge Laplacian.

e McKean-Singer: L (g) = Tr & XR) [g exp (—SDX’Q)}
(independent of s > 0).

T2 R g exp(—5D%2)] 120
L(9) [s=+o > Fixed point formula | ;.
—_———

global local
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The heat operator of X

e X compact Riemannian manifold.

e AX Laplacian on X.
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Euler characteristic and heat equation

The heat operator of X

e X compact Riemannian manifold.
e A¥X Laplacian on X.

e Fort >0, g=exp (tAX / 2) heat operator acting on
C*(X,R).
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Euler characteristic and heat equation

Four questions

Q Is v B [g) an Euler characteristic?

@ Is there a resolution (R, d) of C*° (X, R), on which ¢
acts, such that

TrCOO(X,R) [g] _ TYSR [g exp (—D?%,b/2)} )

with Dpj a suitable ‘Dirac operator’ 7

@ By making b — 400, do we obtain Selberg’s trace
formula 7 (extension of Poisson formula).

@ Is Selberg’s trace formula an index formula?
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The analogy

Trsﬂ.<X’R) [g exp(_SDX’z)] ‘s>0

L(9) |s=to0 > Fixed point formula |s—.
—_————
global local
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Euler characteristic and heat equation

The analogy

2" R [g oxp(~sD%2) |20

L(9)|s=+o0 > Fixed point formula |s—.
global local

- TrSR[gexp(—DR’Q)]|b>o
TyC (XR) 9140 ' > Selberg t.f.[p— 1 oo -

global local via closed geodesics
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Euler characteristic and heat equation

Prototype of Selberg formula: Poisson formula

e S'=R/Z circle.

@ Poisson formula:

Tr [exp (tASl/Z)} = \/;_mt > exp (—n2/2t> :

neZ

o Left-hand side: spectral, right-hand side: closed
geodesics.
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e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.
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Euler characteristic and heat equation

Selberg’s trace formula

e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.

T [exp (1% 2)] = 22y x)
heat kernel geodesic flow

2 9/2 dy
/R b (_y /2t) sinh (y/2) v/2rt
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Euler characteristic and heat equation

Selberg’s trace formula

e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.

T [exp (1% 2)] = 22y x)
heat kernel geodesic flow

2 y/2 dy
/R b (_y /215) sinh (y/2) v/2rt
Vol, exp (—63/215 - t/8)
T2 e 2emh(G)2)

7#1
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Euler characteristic and heat equation

Selberg’s trace formula

e X Riemann surface of constant scalar curvature —2, I,
length of closed geodesics 7.

]
T [exp (1% 2)] = 22y x)
heat kernel geodesic flow

2 y/2 dy
/R b (_y /215) sinh (y/2) v/2rt
Vol,, exp (—63/225 — t/8>
T2 e 2emh(G)2)

7#1
e Right-hand side orbital integrals for G = SLy (R).
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Euler characteristic and heat equation

Resolutions of C* (X, R)

e F real vector bundle on X, with total space £.
° (Q‘ (E,R) ,dE> relative de Rham complex.
e Poincaré lemma: cohomology is just C* (X, R).

o If g% metric, there is a corresponding Hodge theory
(Witten Laplacian).

@ Make the right choice of E: coupling of base X with
fiber E.

e Make the heat kernel g lift to (Q‘ (E,R) ,dE).
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The symmetric space X

e G real reductive group, K maximal compact subgroup,
X = G/K symmetric space.

o g =p @t Cartan splitting equipped with bilinear form
B>0onp, <Oont...

@ ...descends to bundle of Lie algebras TX & N on X.

G =SLy (R), K = S', X upper half-plane, TX & N of
dimension 3.
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@ The analysis will be done on G' Xk g...

@ ...which is the total space X of TX & N over
X =G/K.

e Two separate constructions on G and on g.
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Hypoelliptic Laplacian and orbital integrals

The analysis on G X g

@ The analysis will be done on G' Xk g...

@ ...which is the total space X of TX & N over
X =G/K.

e Two separate constructions on G and on g.

@ Both constrictions involve Dirac operators.
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Casimir and Kostant

o (%= —3 efe; Casimir (differential operator on G),
positive on p, negative on &.

o ¢(g) Clifford algebra of (g, —B) acts on A® (g*).

e U (g) enveloping algebra (left-invariant differential
operators on G).

e D" e ¢(g) ® U (g) Dirac operator of Kostant.
o k¥ (U, VW)= B([U, V], W) closed 3-form.

o DX =2(ef)e; + 3¢ (—kY).
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A formula of Kostant

Theorem (Kostant)

DKo2 — _ 9 4 B* (%, %) .
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A formula of Kostant

Theorem (Kostant)

DKo2 — _ 9 4 B* (%, %) .

Remark

D¥° acts on C* (G, A® (g%)), while C? acts on C* (G, R).
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A formula of Kostant

Theorem (Kostant)

DKo2 — _ 9 4 B* (%, %) .

D¥° acts on C* (G, A® (g%)), while C? acts on C* (G, R).
DX distinct from the (pseudo)-riemannian Dirac operator.

Jean-Michel Bismut Hypoelliptic Laplacian 17 /36



The hypoelliptic Laplacian

Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals
References

The Witten Laplacian on g

Jean-Michel Bismut Hypoelliptic Laplacian 18 /36



The hypoelliptic Laplacian
Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals

References

The Witten Laplacian on g

e g =p @ £ Euclidean vector space.

Jean-Michel Bismut Hypoelliptic Laplacian 18 /36
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The Witten Laplacian on g
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The Witten Laplacian on g

g = p & € Euclidean vector space.

H?® harmonic oscillator on g,
HO =2 (=04 Y2 =),
2

o & =d’ +YPA, d" = d™ +iye acts on C*™ (p, A* (p¥)).
o & =& —id & =& +id" .

D% = d° 4+ d* Dirac operator acts on C* (g, A (gg))-
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The Witten Laplacian on g

g = p & € Euclidean vector space.

H?® harmonic oscillator on g,

Y — ; (~at+ VP —n).

&' = dP + YPA, d™ = d + iy» acts on C™ (p, A® (p*)).
o d'=d —id & =d" +id .

e D% = d% + d* Dirac operator acts on C™ (g, A (g&))-
o L) = O N
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The operator 3y

e ©, combination of Dirac operators on G and g.
e 9, acts on C (G x g,A* (g¢))-

o D, = DX +ic [V VP]) + 1 (& +d™).

e O, K-invariant.

@ The quadratic term is related to the quotienting by K.
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2
@ Quotient the construction by K.
@ g=p®dEdescends on X to flat vector bundle TX & N.

o 7: X — X total space of TX @& N.

o Set £, =} (~DX°? 4 9?).

Jean-Michel Bismut Hypoelliptic Laplacian 20 /36



Hypoelliptic Laplacian and orbital integrals
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2
@ Quotient the construction by K.
e g=p @ ¢Edescends on X to flat vector bundle TX & N.
o 7: X — X total space of TX @& N.

°o Lif =3 (—5[(0’2 + 952) acts on

o Set £, =} (~DX°? 4 9?).

C* (X, 7A (T*X & N*),) .
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The hypoelliptic Laplacian

o Set £, =} (~DX°? 4 9?).
@ Quotient the construction by K.

e g=p @ ¢Edescends on X to flat vector bundle TX & N.
o 7: X — X total space of TX @& N.

°o Lif =3 (—5[(0’2 + 952) acts on

C> (X, 7 A (T"X & N)g)
Using the fiberwise Bargmann isomorphism, £;¥ acts on

C®(X,S* (T*X @ N*) @ A* (T*X & N*)).
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A formula for the hypoelliptic Laplacian

1
202
Harmonic oscillator of TX &N

NA(T*XON®)

e = 5| y™fs 7

(—ATXEBN +|Y) - n> +

+2( Vyrs +¢ (ad (Y7¥))=c (ad (Y"¥) + ifad (YN>))

geodesic flow
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Collapsing to X as b — 0

e L;¥ looks like a Fokker-Planck operator.
0 b—0, LY —1 (CQ’X - c): X collapses to X (B.
2011).

@ b — 400, geodesic f. Vyrx dominates = closed
geodesics.
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e [' C G cocompact torsion free.

e Z =T\ X compact locally symmetric.
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A fundamental identity

Theorem

Fort > 0,0 >0,
T (25 {exp (—t (CQ’Z — c) /2)} = Try [exp (—tﬁbzﬂ .

Remark

o This is exactly what we wanted!

e C™ (Z,R) has been replaced by a Witten complex over
Z, whose cohomology is just C* (Z,R).

oT'Z @ NZ bigger than the tangent bundle.
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Splitting the identity

@ Each side splits as an infinite sum indexed by
conjugacy classes in I'.

© The above identity splits as an identity of orbital
integrals.
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A second fundamental identity

Theorem (B. 2011)
For b > 0,t > 0,

T [exp (1 (€8 — ) /2)] = Tob [exp (—45)]

Jean-Michel Bismut Hypoelliptic Laplacian 26 /36



Hypoelliptic Laplacian and orbital integrals

A second fundamental identity

Theorem (B. 2011)
For b > 0,t > 0,

T [exp (1 (€8 — ) /2)] = Tob [exp (—45)]

Remark

The proof uses the fact that Trl" is a trace on the algebra
of G-invariants smooth kernels on X with Gaussian decay.

|
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e 7 € (G semi-simple, [y] conjugacy class.

e For ¢ >0, Trl [exp (—t (CQ’X - c) /2)} orbital
integral of heat kernel on orbit of ~:

1= [, 0 (7)) do
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Semi-simple orbital integrals

e 7 € (G semi-simple, [y] conjugacy class.

e For ¢ >0, Trl [exp (—t (CQ’X - c) /2)} orbital
integral of heat kernel on orbit of ~:

1= [, 0 (7)) do

e X () symmetric space for Z () totally geodesic in X.
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Geometric description of the orbital integral

——

Jacobian

10)= [ e in] ey ay.

o) X(’y) Yo

Y Y

d(Y,yY) > C[Y| - C"
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Geometric description of the orbital integral

o) = [, )] ) av

Jacobian

o) X(’y) Yo

Y vY
dY,~vY) > ClY| -

pX (2,2') < Cexp(~C'd(z, 2')).
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e After rescaling of Y7X YV as b — 400,
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Ly S |[YNYTX] 4 V)P = Vyrs

~——

geodesic flow
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e After rescaling of Y7X YV as b — 400,
2
Ly S |[YNYTX] 4 V)P = Vyrs
desic
geodesic now

e As b — 400, the orbital integral localizes near X (),
the manifold of geodesics in X associated with ~.
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e As b — 400, the orbital integral localizes near X (),
the manifold of geodesics in X associated with ~.

e y=c¢ktaep ke K Ad(k)a=a.
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The limit as b — 400

e After rescaling of Y7X YV as b — 400,
2
L= S |[YN YT 4 LY~ Vyrs
desic
geodesic now

e As b — 400, the orbital integral localizes near X (),
the manifold of geodesics in X associated with ~.

e v=cktaepkeKAd(k)a=a.
o Z () centralizer of v, 3 (v) = p (y) @ £ (v) Lie algebra
of Z ().
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A formula for semi-simple orbital integrals

Theorem (B. 2011)
There is an explicit function 7, (YOE) ,Y§ € it (v), such that

. exp (— |al® /2t
Tyl [exp (—t (C’g’ — c) /2)} = ((27rt)p/2 )

/ié(v) T <Y°E> 1 [PE (k:—le—Yoé)}

exp (— \Y;f /2t>

Ay}
(2mt)¥*
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A formula for semi-simple orbital integrals

Theorem (B. 2011)
There is an explicit function 7, (YOE) ,Y§ € it (v), such that

. exp (— |al® /2t
Tyl [exp (—t (C’g’ — c) /2)} = ((27rt)p/2 )

/ié(v) T <Y(f> 1 [PE (k:—le—Yoé)}

exp (— \Y;f /215)

Ay}
(2mt)¥*

Local index techniques play fundamental role in the

evaluation.
Jean-Michel Bismut Hypoelliptic Laplacian 30/36



The hypoelliptic Laplacian

Euler characteristic and heat equation
Hypoelliptic Laplacian and orbital integrals
References

The function J, (Y)Y € i€ (v)

Jean-Michel Bismut Hypoelliptic Laplacian 31/36



Hypoelliptic Laplacian and orbital integrals
The function 7, (Y)Y € i€ ()

1 A (ad (Yok) |p(v))
12 ¢
’det (1—-Ad(y)) |;,0l) A (ad <YO>E(V)>

7 (%) -

1
[det (T —Ad (kD) [

det (1— Ad (ke °))|ew> i
det (1 — Ad (k7)) s, ] '
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An example

@ p; (x) kernel for exp (tAR/2> on R.
e Given a € R, p; (a) is an orbital integral.
e For b >0, p (a) = Tr" {exp (—tLbR)}.
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An example

@ p; (x) kernel for exp (tAR/2> on R.

e Given a € R, p; (a) is an orbital integral.

o For b >0, p; (a) = Tr" [exp (—tLbR)]

e By making b — 400, pt (a) = ﬁ exp (—a?/2t).
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An example

(]

pi (z) kernel for exp (tAR/2> on R.

Given a € R, p; (a) is an orbital integral.

For b >0, p; (a) = Trs* [exp (—tLbR)]

By making b — +o0, p; (a) = ﬁ exp (—a?/2t).

exp (tAR/2> (a) = ﬁ exp (—a?/2t) is an index
formulal
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e In 1908, on R?, Langevin introduced the Langevin
equation mz = —x + w. ..
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@ Through Hamiltonian-Lagrangian correspondence. . .
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The Langevin equation

e In 1908, on R?, Langevin introduced the Langevin
equation mz = —x + w. ..

@ ...to reconcile Brownian motion & = w and classical
mechanics: & = 0.

@ Through Hamiltonian-Lagrangian correspondence. . .

@ ...in the theory of the hypoelliptic Laplacian, b? is a
mass.

@ The hypoelliptic Laplacian gives a role to mass in
classical math!
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Langevin (C.R. de I’Académie des Sciences 1908)

Une particule comme celle que nous considérons, grande par rapport & la distance
moyenne des molécules du liquide, et se mouvant par rapport a celui-ci avec la vitesse £
subit une résislance visqueuse égale 3 — 6rp.as d’aprés la formule de Stokes. En réalité,
celte valeur n'est qu’une moyenne, et en raison de Pirrégularité des chocs des molé-
cules environnantes, 'action du (luide sur Ia particule oscille autour de la valeur
précédente, de sorte que 'équation du mouvement est, dans la direction .,

2
(3) m%ﬁf :—Gﬁya%—}-x.
Sur la force complémentaire X nous savons qu’elle est indifféremment positive et nééa-
live, el sa grandeur est telle qu'elle maintient Pagitation de Ia particule que, sans elle,
la résistance visqueuse finirait par arréter.
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