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Definition

X compact Riemannian manifold.
If □X is an elliptic Laplacian, hypoelliptic Laplacian
deformation of □X/2. . .
. . . through a family of non self-adjoint hypoelliptic
operators LX

b |b>0 acting on total space X of a vector
bundle on X.
It is a tool to study the elliptic Laplacian.
If □X = DX,2, deformation constructed via
deformation of DX .
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Why the hypoelliptic Laplacian

The deformation preserves certain spectral invariants
(analytic torsion, eta invariants).
In certain cases, the spectrum is fully ‘preserved’.
The hypoelliptic Laplacian gives a direct exact
connection of elliptic theory to transport phenomena.
Applications to real and holomorphic torsion, to
Selberg’s trace formula, to complex geometry.
Each hypoelliptic Laplacian is specific to the problem
one wants to solve.
Here, we will concentrate on the trace formula.
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The form of the hypoelliptic Laplacian

X compact Riem. manifold, X total space of TX.
H harmonic oscillator along fibers of TX,

H = 1
2

(
−∆V + |Y |2 − n

)
.

Y H generator of geodesic flow vector field on X ,

Y H (x, Y ) ≃
∑

Y i ∂

∂xi
.

LX
b = H

b2 − Y H

b
+ matrix terms of order 0.

LX
b geometric Fokker-Planck operator.
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The Euler characteristic

X compact Riemannian manifold.
Euler characteristic χ (X) = ∑ (−1)i dim H i (X, R).
g ∈ Diff (X) acts on H · (X, R).
Lefschetz number L (g) = Trs

H·(X,R) [g].
g = 1: Euler characteristic.
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The heat equation method

(
Ω• (X, R) , dX

)
de Rham complex, acyclic resolution

of the sheaf of locally constant functions.
gT X Riemannian metric, dX∗ formal adjoint of dX ,
DX = dX + dX∗ Dirac operator.
DX,2 =

[
dX , dX∗

]
Hodge Laplacian.

McKean-Singer: L (g) = Trs
Ω•(X,R)

[
g exp

(
−sDX,2

)]
(independent of s > 0).

L (g) |s=+∞︸ ︷︷ ︸
global

TrsΩ•(X,R)[g exp(−sDX,2)]|s>0

−−−−−−−−−−−−→ Fixed point formula︸ ︷︷ ︸
local

|s=0.
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The heat operator of X

X compact Riemannian manifold.
∆X Laplacian on X.
For t > 0, g = exp

(
t∆X/2

)
heat operator acting on

C∞ (X, R).
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Four questions

1 Is TrC∞(X,R) [g] an Euler characteristic?
2 Is there a resolution (R, d) of C∞ (X, R), on which g

acts, such that

TrC∞(X,R) [g] = Trs
R

[
g exp

(
−D2

R,b/2
)]

,

with DR,b a suitable ‘Dirac operator’ ?
3 By making b → +∞, do we obtain Selberg’s trace

formula ? (extension of Poisson formula).
4 Is Selberg’s trace formula an index formula?
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The analogy

L (g) |s=+∞︸ ︷︷ ︸
global

TrsΩ•(X,R)[g exp(−sDX,2)]|s>0

−−−−−−−−−−−−→ Fixed point formula︸ ︷︷ ︸
local

|s=0.

TrC∞(X,R) [g]b=0︸ ︷︷ ︸
global

TrsR[g exp(−DR,2
b )]|b>0

−−−−−−−−−−−−→ Selberg t.f.|b=+∞︸ ︷︷ ︸
local via closed geodesics

.
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Prototype of Selberg formula: Poisson formula

S1 = R/Z circle.
Poisson formula:

Tr
[
exp

(
t∆S1

/2
)]

= 1√
2πt

∑
n∈Z

exp
(
−n2/2t

)
.

Left-hand side: spectral, right-hand side: closed
geodesics.
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Selberg’s trace formula

X Riemann surface of constant scalar curvature −2, lγ
length of closed geodesics γ.

Tr
[
exp

(
t∆X/2

)]
︸ ︷︷ ︸

heat kernel

= exp (−t/8)
2πt

Vol (X)︸ ︷︷ ︸
geodesic flow

∫
R

exp
(
−y2/2t

) y/2
sinh (y/2)

dy√
2πt

+
∑
γ ̸=1

Volγ√
2πt

exp
(
−ℓ2

γ/2t − t/8
)

2 sinh (ℓγ/2) .

• Right-hand side orbital integrals for G = SL2 (R).
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Resolutions of C∞ (X, R)

E real vector bundle on X, with total space E .(
Ω• (E, R) , dE

)
relative de Rham complex.

Poincaré lemma: cohomology is just C∞ (X, R).
If gE metric, there is a corresponding Hodge theory
(Witten Laplacian).
Make the right choice of E: coupling of base X with
fiber E.
Make the heat kernel g lift to

(
Ω• (E, R) , dE

)
.
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The symmetric space X

G real reductive group, K maximal compact subgroup,
X = G/K symmetric space.
g = p ⊕ k Cartan splitting equipped with bilinear form
B > 0 on p, < 0 on k . . .
. . . descends to bundle of Lie algebras TX ⊕ N on X.

Example
G = SL2 (R), K = S1, X upper half-plane, TX ⊕ N of
dimension 3.
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The analysis on G ×K g

The analysis will be done on G ×K g. . .
. . . which is the total space X̂ of TX ⊕ N over
X = G/K.
Two separate constructions on G and on g.
Both constrictions involve Dirac operators.
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Casimir and Kostant

Cg = − ∑
e∗

i ei Casimir (differential operator on G),
positive on p, negative on k.
ĉ (g) Clifford algebra of (g, −B) acts on Λ• (g∗).
U (g) enveloping algebra (left-invariant differential
operators on G).
D̂Ko ∈ ĉ (g) ⊗ U (g) Dirac operator of Kostant.
κg (U, V, W ) = B ([U, V ] , W ) closed 3-form.
D̂Ko = ĉ (e∗

i ) ei + 1
2 ĉ (−κg).
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D̂Ko ∈ ĉ (g) ⊗ U (g) Dirac operator of Kostant.
κg (U, V, W ) = B ([U, V ] , W ) closed 3-form.
D̂Ko = ĉ (e∗
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A formula of Kostant

Theorem (Kostant)

D̂Ko,2 = −Cg + B∗ (ρg, ρg) .

Remark
D̂Ko acts on C∞ (G, Λ• (g∗)), while Cg acts on C∞ (G, R).
D̂Ko distinct from the (pseudo)-riemannian Dirac operator.
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The Witten Laplacian on g

g = p ⊕ k Euclidean vector space.
Hg harmonic oscillator on g,

Hg = 1
2

(
−∆g + |Y |2 − n

)
.

dp = dp + Y p∧, dp∗ = dp∗ + iY p acts on C∞ (p, Λ• (p∗)).
d
g = d

p − id
k
, d

g∗ = d
p∗ + id

k∗
.

Dg = dg + dg∗ Dirac operator acts on C∞ (g, Λ (g∗
C)).

1
2 [dg, dg∗] = Hg + NΛ•(g∗).
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The operator Db

Db combination of Dirac operators on G and g.
Db acts on C∞ (G × g, Λ• (g∗

C)).
Db = D̂Ko + ic

([
Y k, Y p

])
+ 1

b
(dg + dg∗).

Db K-invariant.
The quadratic term is related to the quotienting by K.
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The hypoelliptic Laplacian

Set Lb = 1
2

(
−D̂Ko,2 + D2

b

)
.

Quotient the construction by K.
g = p⊕ k descends on X to flat vector bundle TX ⊕ N .
π̂ : X̂ → X total space of TX ⊕ N .
LX

b = 1
2

(
−D̂Ko,2 + DX,2

b

)
acts on

C∞
(
X̂ , π̂∗Λ• (T ∗X ⊕ N∗)C

)
.

Remark
Using the fiberwise Bargmann isomorphism, LX

b acts on

C∞ (X, S• (T ∗X ⊕ N∗) ⊗ Λ• (T ∗X ⊕ N∗)C) .
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A formula for the hypoelliptic Laplacian

LX
b = 1

2
∣∣∣[Y N , Y T X

]∣∣∣2+ 1
2b2

(
−∆T X⊕N + |Y |2 − n

)
︸ ︷︷ ︸

Harmonic oscillator of T X⊕N

+NΛ•(T ∗X⊕N∗)

b2

+1
b

 ∇Y T X︸ ︷︷ ︸
geodesic flow

+ĉ
(
ad

(
Y T X

))
−c

(
ad

(
Y T X

)
+ iθad

(
Y N

)).
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Collapsing to X as b → 0

LX
b looks like a Fokker-Planck operator.

b → 0, LX
b → 1

2

(
Cg,X − c

)
: X̂ collapses to X (B.

2011).
b → +∞, geodesic f. ∇Y T X dominates ⇒ closed
geodesics.
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The case of locally symmetric spaces

Γ ⊂ G cocompact torsion free.
Z = Γ \ X compact locally symmetric.
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A fundamental identity

Theorem
For t > 0, b > 0,

TrC∞(Z,E)
[
exp

(
−t

(
Cg,Z − c

)
/2

)]
= Trs

[
exp

(
−tLZ

b

)]
.

Remark
•This is exactly what we wanted!

• C∞ (Z, R) has been replaced by a Witten complex over
Z, whose cohomology is just C∞ (Z, R).
•TZ ⊕ NZ bigger than the tangent bundle.
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Splitting the identity

1 Each side splits as an infinite sum indexed by
conjugacy classes in Γ.

2 The above identity splits as an identity of orbital
integrals.
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A second fundamental identity

Theorem (B. 2011)
For b > 0, t > 0,

Tr[γ]
[
exp

(
−t

(
Cg,X − c

)
/2

)]
= Trs

[γ]
[
exp

(
−tLX

b

)]
.

Remark
The proof uses the fact that Tr[γ] is a trace on the algebra
of G-invariants smooth kernels on X with Gaussian decay.
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Semi-simple orbital integrals

γ ∈ G semi-simple, [γ] conjugacy class.
For t > 0, Tr[γ]

[
exp

(
−t

(
Cg,X − c

)
/2

)]
orbital

integral of heat kernel on orbit of γ:

I ([γ]) =
∫

Z(γ)\G
TrE

[
pX

t

(
g−1γg

)]
dg.

X (γ) symmetric space for Z (γ) totally geodesic in X.
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Geometric description of the orbital integral

I (γ) =
∫

NX(γ)/X

Tr
[
γpX

t (Y, γY )
]

r (Y )︸ ︷︷ ︸
Jacobian

dY.

x0 γx0

Y γY

d(Y, γY ) ≥ C|Y | − C ′

X(γ)

pX
t (x, x′) ≤ C exp(−C ′d2(x, x′)).
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The limit as b → +∞

After rescaling of Y T X , Y N , as b → +∞,
Lb ≃ b4

2

∣∣∣[Y N , Y T X
]∣∣∣2 + 1

2 |Y |2 − ∇Y T X︸ ︷︷ ︸
geodesic flow

.

As b → +∞, the orbital integral localizes near X (γ),
the manifold of geodesics in X associated with γ.
γ = eak−1, a ∈ p, k ∈ K, Ad (k) a = a.
Z (γ) centralizer of γ, z (γ) = p (γ) ⊕ k (γ) Lie algebra
of Z (γ).

Jean-Michel Bismut Hypoelliptic Laplacian 29 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

The limit as b → +∞

After rescaling of Y T X , Y N , as b → +∞,
Lb ≃ b4

2

∣∣∣[Y N , Y T X
]∣∣∣2 + 1

2 |Y |2 − ∇Y T X︸ ︷︷ ︸
geodesic flow

.

As b → +∞, the orbital integral localizes near X (γ),
the manifold of geodesics in X associated with γ.
γ = eak−1, a ∈ p, k ∈ K, Ad (k) a = a.
Z (γ) centralizer of γ, z (γ) = p (γ) ⊕ k (γ) Lie algebra
of Z (γ).

Jean-Michel Bismut Hypoelliptic Laplacian 29 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

The limit as b → +∞

After rescaling of Y T X , Y N , as b → +∞,
Lb ≃ b4

2

∣∣∣[Y N , Y T X
]∣∣∣2 + 1

2 |Y |2 − ∇Y T X︸ ︷︷ ︸
geodesic flow

.

As b → +∞, the orbital integral localizes near X (γ),
the manifold of geodesics in X associated with γ.

γ = eak−1, a ∈ p, k ∈ K, Ad (k) a = a.
Z (γ) centralizer of γ, z (γ) = p (γ) ⊕ k (γ) Lie algebra
of Z (γ).

Jean-Michel Bismut Hypoelliptic Laplacian 29 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

The limit as b → +∞

After rescaling of Y T X , Y N , as b → +∞,
Lb ≃ b4

2

∣∣∣[Y N , Y T X
]∣∣∣2 + 1

2 |Y |2 − ∇Y T X︸ ︷︷ ︸
geodesic flow

.

As b → +∞, the orbital integral localizes near X (γ),
the manifold of geodesics in X associated with γ.
γ = eak−1, a ∈ p, k ∈ K, Ad (k) a = a.

Z (γ) centralizer of γ, z (γ) = p (γ) ⊕ k (γ) Lie algebra
of Z (γ).

Jean-Michel Bismut Hypoelliptic Laplacian 29 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

The limit as b → +∞

After rescaling of Y T X , Y N , as b → +∞,
Lb ≃ b4

2

∣∣∣[Y N , Y T X
]∣∣∣2 + 1

2 |Y |2 − ∇Y T X︸ ︷︷ ︸
geodesic flow

.

As b → +∞, the orbital integral localizes near X (γ),
the manifold of geodesics in X associated with γ.
γ = eak−1, a ∈ p, k ∈ K, Ad (k) a = a.
Z (γ) centralizer of γ, z (γ) = p (γ) ⊕ k (γ) Lie algebra
of Z (γ).

Jean-Michel Bismut Hypoelliptic Laplacian 29 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

A formula for semi-simple orbital integrals

Theorem (B. 2011)

There is an explicit function Jγ

(
Y k

0

)
, Y k

0 ∈ ik (γ), such that

Tr[γ]
[
exp

(
−t

(
Cg,X − c

)
/2

)]
=

exp
(
− |a|2 /2t

)
(2πt)p/2∫

ik(γ)
Jγ

(
Y k

0

)
Tr

[
ρE

(
k−1e−Y k

0
)]

exp
(

−
∣∣∣Y k

0

∣∣∣2 /2t
)

dY k
0

(2πt)q/2 .

Local index techniques play fundamental role in the
evaluation.

Jean-Michel Bismut Hypoelliptic Laplacian 30 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

A formula for semi-simple orbital integrals

Theorem (B. 2011)

There is an explicit function Jγ

(
Y k

0

)
, Y k

0 ∈ ik (γ), such that

Tr[γ]
[
exp

(
−t

(
Cg,X − c

)
/2

)]
=

exp
(
− |a|2 /2t

)
(2πt)p/2∫

ik(γ)
Jγ

(
Y k

0

)
Tr

[
ρE

(
k−1e−Y k

0
)]

exp
(

−
∣∣∣Y k

0

∣∣∣2 /2t
)

dY k
0

(2πt)q/2 .

Local index techniques play fundamental role in the
evaluation.

Jean-Michel Bismut Hypoelliptic Laplacian 30 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

A formula for semi-simple orbital integrals

Theorem (B. 2011)

There is an explicit function Jγ

(
Y k

0

)
, Y k

0 ∈ ik (γ), such that

Tr[γ]
[
exp

(
−t

(
Cg,X − c

)
/2

)]
=

exp
(
− |a|2 /2t

)
(2πt)p/2∫

ik(γ)
Jγ

(
Y k

0

)
Tr

[
ρE

(
k−1e−Y k

0
)]

exp
(

−
∣∣∣Y k

0

∣∣∣2 /2t
)

dY k
0

(2πt)q/2 .

Local index techniques play fundamental role in the
evaluation.

Jean-Michel Bismut Hypoelliptic Laplacian 30 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

A formula for semi-simple orbital integrals

Theorem (B. 2011)

There is an explicit function Jγ

(
Y k

0

)
, Y k

0 ∈ ik (γ), such that

Tr[γ]
[
exp

(
−t

(
Cg,X − c

)
/2

)]
=

exp
(
− |a|2 /2t

)
(2πt)p/2∫

ik(γ)
Jγ

(
Y k

0

)
Tr

[
ρE

(
k−1e−Y k

0
)]

exp
(

−
∣∣∣Y k

0

∣∣∣2 /2t
)

dY k
0

(2πt)q/2 .

Local index techniques play fundamental role in the
evaluation.

Jean-Michel Bismut Hypoelliptic Laplacian 30 / 36



The hypoelliptic Laplacian
Euler characteristic and heat equation

Hypoelliptic Laplacian and orbital integrals
References

The function Jγ

(
Y k

0
)

, Y k
0 ∈ ik (γ)

Definition

Jγ

(
Y k

0

)
= 1∣∣∣det (1 − Ad (γ)) |z⊥

0

∣∣∣1/2

Â
(
ad

(
Y k

0

)
|p(γ)

)
Â

(
ad

(
Y k

0

)
k(γ)

)
 1

det (1 − Ad (k−1)) |z⊥
0 (γ)

det
(
1 − Ad

(
k−1e−Y k

0
))

|k⊥
0 (γ)

det
(
1 − Ad

(
k−1e−Y k

0
))

|p⊥
0 (γ)

1/2

.
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An example

pt (x) kernel for exp
(
t∆R/2

)
on R.

Given a ∈ R, pt (a) is an orbital integral.
For b > 0, pt (a) = Trs

a
[
exp

(
−tLR

b

)]
.

By making b → +∞, pt (a) = 1√
2πt

exp (−a2/2t).

exp
(
t∆R/2

)
(a) = 1√

2πt
exp (−a2/2t) is an index

formula!
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The Langevin equation

In 1908, on R3, Langevin introduced the Langevin
equation mẍ = −ẋ + ẇ. . .
. . . to reconcile Brownian motion ẋ = ẇ and classical
mechanics: ẍ = 0.
Through Hamiltonian-Lagrangian correspondence. . .
. . . in the theory of the hypoelliptic Laplacian, b2 is a
mass.
The hypoelliptic Laplacian gives a role to mass in
classical math!
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