From the prolate spheroid to zeta spectrum

Alain Connes

NCG-RT conference Athens March 2023

A. Connes, C. Consani, *Weil positivity and trace formula, the archimedean place*. Selecta Math. (N.S.) 27 (2021) no 4.

A. Connes, C. Consani, *Quasi-inner functions and local factors*, Journal of Number Theory, 226, pp. 139–167, 2021.

A. Connes, C. Consani, Spectral triples and ζ -cycles. (2021).

A. Connes, H. Moscovici, *The UV prolate spectrum matches the zeros of zeta*. Proc. Natl. Acad. Sci. U.S.A. 119, e2123174119 (2022).

► Using trace formula for Weil positivity (joint work with C. Consani)

minuscule eigenvalues, prolate functions and low lying zeros of zeta (joint work with C. Consani)

Prolate wave operator and the ultraviolet part of the spectrum (joint work with H. Moscovici).

Ultraviolet

$$N(E) = \frac{E}{2\pi} \log \frac{E}{2\pi} - \frac{E}{2\pi} + O(\log(E))$$
$$\operatorname{Tr}(\exp(-tD^2)) = \frac{\log\left(\frac{1}{t}\right)}{4\sqrt{\pi}\sqrt{t}} - \frac{(\log 4\pi + \frac{1}{2}\gamma)}{2\sqrt{\pi}\sqrt{t}} + O\left(\log\left(\frac{1}{t}\right)\right)$$

In fact, more precisely $\frac{\log\left(\frac{1}{t}\right)}{4\sqrt{\pi}\sqrt{t}} - \frac{\gamma}{4\sqrt{\pi}\sqrt{t}} - \frac{\log(4\pi)}{2\sqrt{\pi}\sqrt{t}} + \frac{7}{4} + \frac{\sqrt{t}}{24\sqrt{\pi}} + \frac{9t}{16} + \dots$

Infrared

Riemann-Weil explicit formula

Function f on \mathbb{R}^*_+ , dual group \mathbb{R} , $\widehat{f}(s) := \int f(u)u^{-is}d^*u, \quad d^*u = du/u$ $\widehat{f}(i/2) - \sum_{\substack{1\\2}+is\in Z} \widehat{f}(s) + \widehat{f}(-i/2) =$ $= \sum_v W_v(f)$

$$W_{\mathbb{R}}(f) := (\log 4\pi + \gamma)f(1) + \int_{1}^{\infty} \left(f(x) + f(x^{-1}) - 2x^{-1/2}f(1) \right) \frac{x^{1/2}}{x - x^{-1}} d^{*}x$$
$$W_{p}(f) = (\log p) \sum_{m=1}^{\infty} p^{-m/2} \left(f(p^{m}) + f(p^{-m}) \right)$$

Delicate distributional principal values

$RH \iff \sum_{v} W_{v}(f * f^{*}) \leq 0,$ $\forall f \in C_{c}^{\infty}(\mathbb{R}^{*}_{+}), \ \widehat{f}(\pm i/2) = 0$

Trace formula Geometry, Hilbert space

S finite set of places containing ∞

$$X_S := \left(\prod_{v \in S} \mathbb{Q}_v \right) / \{ \pm \prod p_v^{n_v} \} \to L^2(X_S)$$

 $\vartheta(h) = \text{scaling action}, \ \widehat{P} := \mathbb{F}_S P \mathbb{F}_S^{-1}$

$$\operatorname{Tr}\left(\left(P+\widehat{P}-1\right)\vartheta(h)\right)=\sum_{v\in S}W_v(h)$$

 $P_{\lambda} = \text{projection on the subspace}$ $\{\xi \mid \xi(x) = 0 \quad \forall x, \ |x| > \lambda\}$ **Pair of projections, angle,** $\alpha = \angle(P_{\lambda}, \widehat{P}_{\lambda})$

Archimedean place, prolate spheroidal wave functions ψ_m

$$P_{\lambda} \mathbb{F}_{e_{\mathbb{R}}} P_{\lambda} \psi_m = (-1)^m \chi(\mu, m) P_{\lambda} \psi_m$$
$$P_{\lambda} \hat{P}_{\lambda} P_{\lambda} \psi_m = \chi(\mu, m)^2 P_{\lambda} \psi_m, \quad \mu = \lambda^2$$
$$\cos^2(\alpha_m) = \chi(\mu, m)^2$$

 S_{λ} = Projection on Sonin's space, Orthogonal to both P_{λ} and \widehat{P}_{λ} . For $\lambda = 1$,

$$\operatorname{tr}(\vartheta(h)\mathbf{S}) = -W_{\mathbb{R}}(h) + \int h(\rho)\epsilon(\rho)d^*
ho,$$

 $\epsilon(\rho^{-1}) = \epsilon(\rho), \ \rho \in \mathbb{R}^*_+, \ \epsilon(\rho), \ \text{for } \rho \ge 1, \ \text{in terms}$ of Prolate Wave functions

$$\epsilon(\rho) = \sum \frac{\lambda(n)}{\sqrt{1 - \lambda(n)^2}} \langle \xi_n \mid \vartheta(\rho^{-1}) \zeta_n \rangle.$$

Strong form of Weil positivity (ac+cc)

$$-W_{\mathbb{R}}(f*f^{*}) \geq \operatorname{Tr}(\vartheta(f) \, S \, \vartheta(f)^{*})$$

$$\forall f \in C_{c}^{\infty}(\mathbb{R}^{*}_{+}), \operatorname{support}(f) \subset [2^{-1/2}, 2^{1/2}]$$

$$\widehat{f}\left(\frac{i}{2}\right) = 0, \widehat{f}(0) = 0$$

Change of sign of the smallest eigenvalue for the archimedean contribution alone, as a function of $\mu := \exp L$, near $\mu = 2$ (in yellow). After adding the contribution of the prime 2 the smallest eigenvalue of the even matrix is > 0 (in blue)

Minuscule eigenvalues

For $\lambda^2 = 11$ the smallest positive eigenvalue is 2.389 × 10⁻⁴⁸

► The presence of these minuscule positive eigenvalues is explained conceptually by the fact that the radical of Weil's quadratic form contains the range of the map \mathcal{E} , for $f(0) = \widehat{f}(0) = 0$

$$\mathcal{E}(f)(x) = x^{1/2} \sum_{n>0} f(nx)$$

► $f \in P_{\lambda} \Rightarrow$ support of $\mathcal{E}(f)$ is contained in $(0, \lambda]$

► $f \in \widehat{P}_{\lambda} \Rightarrow$ support of $\mathcal{E}(f)$ is contained in $[\lambda^{-1}, \infty)$

Prolate projection $\Pi(\lambda, k)$

$$\mathcal{E}(f)(x) = x^{1/2} \sum_{n>0} f(nx)$$

Riemann-Roch = Poisson Formula
$$f(0) = \widehat{f}(0) = 0 \Rightarrow \mathcal{E}(\widehat{f})(x) = \mathcal{E}(f)(x^{-1})$$

$$\Pi(\lambda, k) \text{ orth. proj. on } \mathcal{E}(E(\lambda, k))$$

Fundamental Fact

The space of eigenvectors of k lowest eigenvalues for the Weil quadratic form QW_{λ} corresponds to the prolate projection $\Pi(\lambda, k)$!

agreement of eigenfunctions for the even matrix and the smallest eigenvalue, for the 16 values of μ between 3.5 and 11. For $\mu = 11$ the eigenvalue is 2.389×10^{-48}

agreement of eigenfunctions for the odd matrix and the smallest eigenvalue for the 16 values of μ between 3.5 and 11

agreement of eigenfunctions for the even matrix and the second smallest eigenvalue for the 16 values of μ between 3.5 and 11

agreement of eigenfunctions for the odd matrix and the 6-th smallest eigenvalue for the 16 values of μ between 3.5 and 11. They begin to agree around $\mu = 7.5$

Eigenvectors described usingprolate functionsUse the projection $\Pi(\lambda, k)$ to condition the scalingoperator \rightarrow spectral triple

Spectral triple $\Theta(\lambda, k) = (\mathcal{A}(\lambda), \mathcal{H}(\lambda), D(\lambda, k))$

$$\blacktriangleright \mathcal{A}(\lambda) := C^{\infty}(\mathbb{R}^*_+/\mu^{\mathbb{Z}}), \ \mu = \lambda^2$$

$$\blacktriangleright \mathcal{H} = L^2(\mathbb{R}^*_+/\mu^{\mathbb{Z}}, d^*u) \simeq L^2([\lambda^{-1}, \lambda], d^*u)$$

$$\blacktriangleright D(\lambda, k) := Q \circ D_0(\lambda) \circ Q,$$

$$Q = 1 - \Pi(\lambda, k), D_0(\lambda) := -iu\partial_u$$

$\mu = 10.5$

n	$\chi(10.5,n)$
15	0.99999999974270022369
16	0.99999997703659571104
17	0.99999843436641476606
18	0.99992039045021729410
19	0.99713907784499135361
20	0.94005235637340584775
21	0.58413979804862029634
22	0.16939519615152177689

One has $\nu(10.5) = 20, 2\pi 10.5 \sim 65.9734$.

λ_{j}	ζ_j	
14.450	14.1347	
21.455	21.022	
25.356	25.0109	
30.345	30.4249	
32.600	32.9351	
37.410	37.5862	
40.387	40.9187	
42.895	43.3271	
48.095	48.0052	
50.346	49.7738	
53.272	52.9703	
56.050	56.4462	
58.737	59.347	
61.386	60.8318	
63.949	65.1125	

Evolution of eigenvalues

The curves represent, as a function of $\mu = \lambda^2$, the first positive eigenvalue $\lambda_1(D(\lambda, 2k))$ of $D(\lambda, 2k)$. The ordinate of the points where the graphs touch each other is constant and coincides with the imaginary part $\zeta_1 \sim 14.134$ of the first zero of zeta.

Quantization condition

▶ The points of contact for λ_n fulfill $\log x \in \frac{2\pi}{\zeta_n} \mathbb{Z}$

• The coordinates (x, y) of the points of contact fulfill

$$x^{iy} = 1$$

Criterion $\xi_n(D)$ eigenvector of D_0

Conceptual explanation

► Riemann sums in integration

Scale invariant Riemann sums

Zeta-cycles

Scale invariant Riemann sums

$$\int f(u)du = 0, \quad (f(0) = 0)$$
$$(\mathcal{E}f)(u) := u^{1/2} \sum_{n>0} f(nu)$$
$$(\Sigma_{\mu}g)(u) := \sum_{k \in \mathbb{Z}} g(\mu^{k}u).$$

A ζ -cycle is a circle C of length

 $L = \log \mu$ such that the subspace $\Sigma_{\mu} \mathcal{E}(\mathcal{S}_0)$

is not dense in the Hilbert space $L^2(C)$.

Theorem

(*i*) Let *C* be a ζ -cycle. Then the spectrum of the action of the multiplicative group \mathbb{R}^*_+ on the orthogonal complement of $\Sigma_{\mu} \mathcal{E}(S_0)$ in $L^2(C)$ is formed by imaginary parts of zeros of zeta on the critical line.

Conversely :

(*ii*) Let s > 0 be such that $\zeta(\frac{1}{2} + is) = 0$, then any circle *C* of length an integral multiple of $2\pi/s$ is a zeta cycle and its spectrum, for the action of \mathbb{R}^*_+ on $\Sigma_{\mu} \mathcal{E}(\mathcal{S}_0) \subset L^2(C)$, contains *is*

This Theorem provides the theoretical explanation for the above coincidence of spectral values. Indeed, the special values of $\lambda^2 = \mu = \exp L$ at which the k dependence of the eigenvalue $\lambda_n(D(\lambda, k))$ disappear, signal that the related circle of length L is a ζ -cycle and that $\lambda_n(D(\lambda, k))$ is in its spectrum. This explains why the low lying part of the spectrum of the spectral triple $\Theta(\lambda, k)$ possesses a tantalizing resemblance with the low lying zeros of the Riemann zeta function.

Zeta-cycles \sim closed geodesics!

 $C = \zeta$ -cycle then for any integer n > 0

The n-fold cover of C is a ζ -cycle

The length of the ζ -cycles are $\frac{2\pi n}{\zeta_k}$.

Ultraviolet behavior

with H. Moscovici Prolate Wave Operator and Zeta

$$N(E) = \frac{E}{2\pi} \log \frac{E}{2\pi} - \frac{E}{2\pi} + O(\log E)$$

$$\operatorname{Tr}(\exp(-tD^2)) = \frac{\log\left(\frac{1}{t}\right)}{4\sqrt{\pi}\sqrt{t}} - \frac{\left(\log 4\pi + \frac{1}{2}\gamma\right)}{2\sqrt{\pi}\sqrt{t}} + O\left(\log\left(\frac{1}{t}\right)\right)$$

A. Connes, H. Moscovici, *Prolate spheroidal operator and Zeta*. arXiv :2112.05500, math.NT math.CA math.QA

A. Connes, H. Moscovici, *The UV prolate spectrum matches the zeros of zeta*. Proc. Natl. Acad. Sci. U.S.A. 119, e2123174119 (2022).

Scaling H does notcommute with Sonin S_{λ} but the prolate wave operator $W_{\lambda} = H(1 + H) + \lambda^2$ Hermitecommutes with Sonin S_{λ}

D. Slepian et all, Bell-labs, 1960-1965

D. Slepian, H. Pollack, *Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty*, The Bell System technical Journal (1961), 43–63.

D. Slepian, *Some asymptotic expansions for prolate spheroidal wave functions*, J. Math. Phys. Vol. **44** (1965), 99–140.

D. Slepian, *Some comments on Fourier analysis, uncertainty and modeling*, Siam Review. Vol. 23 (1983), 379–393.

Prolate coordinates

$$x = \sqrt{\left(a^2 - 1\right)\left(1 - b^2\right)} \cos(c)$$
$$y = \sqrt{\left(a^2 - 1\right)\left(1 - b^2\right)} \sin(c)$$
$$z = ab$$

confocal ellipses E(b), focal distance 2, sum of distances = 2b

Helmholtz equation $\Delta + k^2 = 0$

Rotation invariant solutions $\partial_c = 0$ $\Delta = (a^2 - b^2)^{-1} \left(\partial_a (a^2 - 1) \partial_a + \partial_b (1 - b^2) \partial_b \right)$ $+ (a^2 - 1)^{-1} (1 - b^2)^{-1} \partial_c^2$ $(a^2 - b^2) (\Delta + k^2) = \partial_a (a^2 - 1) \partial_a + \partial_b (1 - b^2) \partial_b$ $+ k^2 (a^2 - b^2)$

Prolate spheroidal operator

The second order operator w_λ appears from separation of variables in the Laplacian Δ for the prolate spheroid :

$$\mathbf{W}_{\lambda} := -\partial_x ((\lambda^2 - x^2)\partial_x) + (2\pi\lambda x)^2$$

$$(k=2\pi\lambda^2)$$

Commutation with differential operator

▶
$$x\partial_x$$
 commutes with $1_{[0,\infty]}$

•
$$(\lambda^2 - x^2)\partial_x$$
 commutes with $1_{[-\lambda,\lambda]}$

► $\partial_x(\lambda^2 - x^2)\partial_x$ commutes with $1_{[-\lambda,\lambda]}$

Commutation with P_{λ} and \widehat{P}_{λ}

► The operator

$$W_{\lambda} := -\partial_x((\lambda^2 - x^2)\partial_x) + (2\pi\lambda x)^2$$

is invariant under $\mathbb{F}_{e_{\mathbb{R}}}$.

► W_{λ} commutes with P_{λ} and \widehat{P}_{λ}

Self-adjoint extension

▶ The minimal domain is the Schwartz space $S(\mathbb{R})$

► The deficiency indices are (4,4).

► Unique self-adjoint extension W_{λ} commuting with P_{λ} and \widehat{P}_{λ} .

\blacktriangleright W_{λ} commutes with Fourier

 \blacktriangleright The selfadjoint operator W_{λ} has discrete spectrum.

 $\blacktriangleright \phi$ eigenfunction of $W_{\lambda} \Rightarrow$ $\phi(x) \sim c \frac{\sin(2\pi\lambda x)}{2}, \quad x \to \infty$ if ϕ is even and $\frac{\cos(2\pi\lambda x)}{x}$ if ϕ is odd.

Semiclassical approximation

$$H_{\lambda}(p,q) = (p^{2} - \lambda^{2})(q^{2} - \lambda^{2})$$
$$W_{\lambda} = -4\pi^{2}H_{\lambda} + 4\pi^{2}\lambda^{4}$$
$$\Omega_{\lambda}(E) := \{(q,p) \mid q \ge \lambda, p \ge \lambda, H_{\lambda}(p,q) \le a\}$$
$$a = \left(\frac{E}{2\pi}\right)^{2}$$
₃₈

The area $\sigma(E)$ of $\Omega_{\lambda}(E)$ is given, with $a = \left(\frac{E}{2\pi}\right)^2$, by the convergent integral

$$I_{\lambda}(a) = \int_{\lambda}^{\infty} \left(\frac{\sqrt{a + \lambda^2 x^2 - \lambda^4}}{\sqrt{x^2 - \lambda^2}} - \lambda \right) dx$$

 $\sigma(E) \sim \frac{E}{2\pi} \left(\log \left(\frac{E}{2\pi} \right) - 1 + \log(4) - 2 \log(\lambda) \right)$ $+ \lambda^2 + o(1)$

In fact one has

$$I_{\lambda}(a) = \lambda^2 I_1(a \, \lambda^{-4})$$

and in terms of elliptic integrals

$$I_1(a) = aK(1-a) - E(1-a) + 1$$
$$\sim \frac{1}{2}\sqrt{a}(\log(a) - 2 + 2\log(4)) + 1 + o(1)$$

Liouville transform

 $V(f)(y) := \Lambda^{1/2} f(\Lambda \cosh(y)) \sinh(y)^{1/2}$

The operator V is a unitary isomorphism $V : L^2([\Lambda, \infty) \rightarrow L^2([0, \infty))$ which conjugates the operator W with the operator

$$S(\phi)(y) := \partial_y^2 \phi(y) - Q(y)\phi(y)$$
$$Q(y) = -(2\pi\Lambda^2)^2 \cosh(y)^2 - \frac{1}{4} \left(\coth^2(y) - 2 \right)$$

Hamiltonian $H = p^2 + Q(q)$

- (i) The Hamiltonian H = -S is in the limit circle case at ∞ .
- (*ii*) The Hamiltonian H is in the limit circle case at 0. Case $\Lambda = \sqrt{2}$ we get for the function h = -Q

$$h(y) = 16\pi^2 \cosh^2(y) + \frac{1}{4} \left(\coth^2(y) - 2 \right)$$

M. Nursultanov, G. Rozenblum, *Eigenvalue asymptotics* for the Sturm-Liouville operator with potential having a strong local negative singularity. Opuscula Mathematica 37(1) :109

$Eigenvalue \ a symptotics \ for \ the \ Sturm-Liouville \ operator. \ .$

 $h(p(\mu)) = \mu$, are

$$N(H,(0,\lambda)) = \pi^{-1} \int_{0}^{\infty} [(\lambda + h(x))^{\frac{1}{2}} - h(x)^{\frac{1}{2}}] dx + O(1), \, \lambda > 0, \quad (1.4)$$

$$N(H,(-\mu,0)) = \pi^{-1} \int_{0}^{p(\mu)} h(x)^{\frac{1}{2}} dx + \pi^{-1} \int_{p(\mu)}^{\infty} [h(x)^{\frac{1}{2}} - (h(x) - \mu)^{\frac{1}{2}}] dx + O(1). \quad (1.5)$$

Formula for N(a)

$$N(a) = \frac{1}{\pi} \int_0^\infty \left((a+h(y))^{1/2} - h(y)^{1/2} \right) dy$$

At the level of the Dirac operator one has $a = (E/2)^2$

$$N_D(E) = \frac{E}{2\pi} \log \frac{E}{2\pi} - \frac{E}{2\pi} + O(\log(E))$$

The logarithmic term is $-\frac{1}{2\pi} \log E$. The numerical value of the coefficient is 0.159155 which is of the same order as the constant involved in the estimate of Trudgian for Zeta

$$|N_{\zeta}(E) - \left(\frac{E}{2\pi}\log\frac{E}{2\pi} - \frac{E}{2\pi}\right)| \le 0.112 \log(E) + O(\log\log E)$$

Dirac operator

► We found Dirac operator with Laplacian two copies of W_{λ} , using the Darboux method.

► We explore associated geometry.

Darboux method

$$p(x) = x^{2} - \lambda^{2}, V(x) = 4\pi^{2}\lambda^{2}x^{2}, W_{\lambda} = \partial(p(x)\partial) + V(x),$$
$$U : L^{2}([\lambda, \infty), dx) \to L^{2}([\lambda, \infty), p(x)^{-1/2}dx)$$
$$U(\xi)(x) := p(x)^{1/4}\xi(x), \quad (\delta f)(x) := p(x)^{1/2}\partial f(x)$$
$$\delta w(x) + w(x)^{2} = -V(x) + \left(\frac{p''(x)}{4} - \frac{p'(x)^{2}}{16p(x)}\right), \quad \forall x \in [\lambda, \infty)$$

$$W_{\lambda} = U^* \left(\delta + w\right) \left(\delta - w\right) U$$

Solution of Riccati equation

For $z \in \mathbb{C}$ and $u = u_1 + zu_2$ the solution u has no zero in (λ, ∞) if $z \notin \mathbb{R}$ and an infinity of zeros otherwise.

Solutions of the Riccati equation

$$w_z(x) = \frac{(x^2 - \lambda^2)^{1/4} \partial \left((x^2 - \lambda^2)^{1/4} u(x) \right)}{u(x)}$$

where $u = u_1 + zu_2$ and $z \in \mathbb{C} \setminus \mathbb{R}$.

Dirac operator

$$D = \begin{pmatrix} 0 & \delta + w(x) \\ \delta - w(x) & 0 \end{pmatrix}$$

Then the square of D is diagonal with each diagonal term spectrally equivalent to W_{λ} ,

$$U^*D^2U = \begin{pmatrix} W_{\lambda} & 0\\ 0 & W_{\lambda} + 2\delta w(x) \end{pmatrix}$$

<u>Ultraviolet~Zeta</u>

The operator 2D has discrete simple spectrum contained in $\mathbb{R} \cup i\mathbb{R}$. Its imaginary eigenvalues are symmetric under complex conjugation and the counting function N(E) counting those of positive imaginary part less than E fulfills

$$N(E) \sim \frac{E}{2\pi} \left(\log \left(\frac{E}{2\pi} \right) - 1 \right) + O(\log E)$$

The first approximate negative eigenvalues of W are -39, -94, -152, -211, -279, -342, -416, -489, -561, -639, -718, -800, -887, -971,

 $-1058, -1148, -1242, -1337, -1433, -1528, -1627, -1728, -1834, -1940, -2044, -2155, \\ -2262, -2375, -2491, -2606, -2723, -2842, -2964, -3084, -3205, -3330, -3461, -3586, \\ -3716, -3845, -3977, -4112, -4245, -4381, -4523, -4662, -4803, -4943, -5088, -5232, \\ -5382, -5527, -5677, -5823, -5977, -6129, -6287, -6440, -6600, -6753, -6915, -7075, \\ -7240, -7402, -7562, -7730, -7902, -8064, -8237, -8408, -8581, -8748, -8924, -9100, \\ -9278, -9456, -9638, -9816, -10000, -10179, -10363, -10549, -10734, -10923, -11114, \\ -11299, -11491, -11681, -11876, -12066, -12267, -12459, -12660, -12860, -13059, \\ -13254, -13464, -13660, -13865, -14069, -14279, -14484, -14694, -14900, -15113, \\ -15326, -15543, -15753, -15967$

The comparison of $2\sqrt{-z}$ with the zeros of zeta then gives

48

12.49 19.3907 24.6577 29.0517	14.1347 21.022 25.0109 30.4249	
33.4066 36.9865 40.7922 44.2267	32.9351 37.5862 40.9187 43.3271	
47.3709 50.5569 53.591 56.5685	48.0052 49.7738 52.9703 56.4462	
62.3217 65.0538 67.7643 70.484	59.347 60.8318 65.1125 67.0798 69.5464	
73.13 75.71 78.1793 80.6722	72.0672 75.7047 77.1448 79.3374	
83.1384 85.6505 88.0909 90.4212	82.9104 84.7355 87.4253 88.8091	
92.844 95.121 97.4679 99.8198	92.4919 94.6513 95.8706 98.8312)

(102.098	101.318	
	104.365	103.726	
	106.621	105.447	
	108.885	107.169	
	111.068	111.03	
	113.225	111.875	
	115.412	114.32	
	117.661	116.227	
	119.766	118.791	
	121.918	121.37	
	124.016	122.947	
	126.127	124.257	
	128.25	127.517	
	130.307	129.579	
	132.378	131.088	
	134.507	133.498	
	136.558	134.757	
	138.607	138.116	
	140.613	139.736	
	142.66	141.124	
	144.665	143.112	
	146.724	146.001	
	148.688	147.423	
	150.692	150.054	
	152.617	150.925	
	154.622	153.025	
	156.576	156.113	
	158.581	157.598	
	160.499	158.85	
\ \	162.481	161.189	/

164.353 166.313	163.031 165.537
168.226	167.184
172.07	169.912
173.92	173.412
175.841	176 441
179.6	178.377
181.516	179.916
183.39	182.207
187.061	185.599
188.934	187.229
190.788	189.416
192.045	193.08
196.347	195.265
200	196.876
201.782	201.265
203.598	202.494
205.417	204.19
209.026	207.906
210.846	209.577
212.594	211.691
214.392	214.547
217.954	216.17
219.691	219.068
223.24	221.431
225.033	224.007
226.804	224.983
220.002	ZZI.4ZI /

Outlook

► Combine infrared with ultraviolet.

► Find the analogue of the prolate wave operator in the semilocal case.

Understand the underlying geometry from Dirac operator.

Geometry = spectral triple

The metric associated to the spectral triple is

$$ds^{2} = -\frac{1}{4}dx^{2}/(x^{2} - \lambda^{2}) = \frac{1}{\alpha(x)}dx^{2}$$

Geometry is compactification of 2D-Lorentzian with periodic time t

$$ds^{2} = -\alpha(x)dt^{2} + \frac{1}{\alpha(x)}dx^{2}$$

which after changing coordinates to
$$v = t - t(x)$$
 with $t(x) = \frac{1}{8\lambda} \log \left((\lambda + x) / (x - \lambda) \right)$

becomes smooth

$$ds^{2} = 4\left(x^{2} - \lambda^{2}\right)dv^{2} - 2dvdx$$

