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Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and
computational complexity classes C :

I Provably total computable functions of T are C -functions

I T can do reasoning using C -predicates
(comprehension, induction, . . . )

Feasible reasoning:

I Given a natural concept X ∈ C , what can we prove about
X using only concepts from C?

I That is: what does T prove about X?

This talk:
X = elementary integer arithmetic operations +, ·,≤
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The class TC0

AC0 ⊆ ACC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ P

TC0 = dlogtime-uniform O(1)-depth nO(1)-size

unbounded fan-in circuits with threshold gates

= FOM-definable on finite structures

representing strings

(first-order logic with majority quantifiers)

= O(log n) time, O(1) thresholds

on a threshold Turing machine
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TC0 and arithmetic operations

For integers given in binary:

I + and ≤ are in AC0 ⊆ TC0

I × is in TC0 (TC0-complete under AC0 reductions)

TC0 can also do:

I iterated addition
∑

i<n Xi

I integer division and iterated multiplication
[BCH’86,CDL’01,HAB’02]

I the corresponding operations on Q, Q(i)
I approximate functions given by nice power series:

I sinX , logX , k
√
X , . . .

I sorting, . . .

=⇒ TC0 is the right class for basic arithmetic operations
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Buss-style bounded arithmetic

One-sorted theories of bounded arithmetic:

I language 〈0, 1,+, ·,≤, bx/2c, |x |,#〉
I Σb

0 formulas: sharply bounded q’fiers ∃x ≤ |t|, ∀x ≤ |t|
I Σ̂b

i formulas: i alternating blocks of bounded quantifiers
(first block ∃) followed by a Σb

0 formula
I T i

2 = BASIC + Σ̂b
i -IND, S i

2 = BASIC + Σ̂b
i -LIND

I T2 =
⋃

i T
i
2 =

⋃
i S

i
2
∼= I∆0 + Ω1

Johannsen and Pollett’s theories for TC0:

I language with −̇, bx/2yc
I all theories include open LIND
I C 0

2 : BBΣb
0 [JP’98]

I C 0
2 [div ]: language incl. bx/yc [Joh’99]

I ∆b
1-CR : ∆b

1 bit-comprehension rule [JP’00]
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Zambella-style bounded arithmetic

Two-sorted bounded arithmetic:

I unary (auxiliary) integers with 0, 1,+, ·,≤
I finite sets = binary integers = binary strings

x ∈ X , |X | = sup{x + 1 : x ∈ X}
I bounded quantifiers: ∃x ≤ t, ∀x ≤ t, ∃X ≤ t, ∀X ≤ t

where X ≤ t is short for |X | ≤ t

I ΣB
0 formulas: bounded FO, no SO quantifiers

I ΣB
i formulas: i alternating blocks of bounded quantifiers

(first block ∃) followed by a ΣB
0 formula

I V i = 2-BASIC + ΣB
i -COMP (implies ΣB

i -IND)
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The theory VTC 0

The two-sorted theory corresponding to TC0 is VTC 0:

I V 0 + every set has a counting function
I provably total computable (i.e., ∃ΣB

0 -definable) functions
are exactly the TC0-functions

I has induction, comprehension, minimization, . . .
for TC0-predicates

Binary arithmetic in VTC 0:

I can define +, ·,≤ on binary integers
I proves integers form a discretely ordered ring
I iterated multiplication challenging =⇒ axiom IMUL:

∀X , n ∃Y ∀i ≤ j < n (Yi ,i = 1 ∧ Yi ,j+1 = Yi ,j · Xj)

(think Yi ,j =
∏j−1

k=i Xk)
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RSUV isomorphism

two-sorted arithmetic one-sorted arithmetic

sets numbers

numbers logarithmic numbers

bounded SO quantifiers bounded quantifiers

bounded FO quantifiers sharply bounded quantifiers

ΣB
i Σ̂b

i

V i S i
2

TV i T i
2

VTC 0 ∆b
1-CR

VTC 0 + ΣB
0 -AC C 0

2

VTC 0 + IMUL + ΣB
0 -AC C 0

2 [div ]

(i ≥ 1)
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Arithmetic in VTC 0 + IMUL / C 0
2 [div ]

Besides division, VTC 0 + IMUL / C 0
2 [div ] can do:

I root approximation for constant-degree polynomials

I =⇒ (RSUV -translation of) open induction (IOpen)

Even better (using ideas of [Man’91]):

Theorem [J’15]

I VTC 0 + IMUL proves the RSUV -translations of
Σb

0-IND (T 0
2 ) and Σb

0-MIN

I C 0
2 [div ] proves Σb

0-IND, Σb
0-MIN
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What remains

Question

Does VTC 0 prove IMUL?

Iterated multiplication is TC0-computable:

Question

Can VTC 0 formalize the algorithms from [HAB’02]?
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History

[BCH’86]

I
∏

i<n Xi , bY /X c, X n are TC0-reducible to each other

I they are in P-uniform TC0

I compute the product in Chinese remainder representation:

CRR ~m(X ) = 〈X mod mi : i < k〉

where ~m = 〈mi : i < k〉 small primes

I (NB: predates definition of TC0)

Improved CRR reconstruction procedures =⇒

I [CDL’01]: logspace-uniform TC0 (hence L)

I [HAB’02]: dlogtime-uniform TC0
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Structure of the algorithm

(0) imul is in TC0[pow]

I sum discrete logarithms modulo m

(1)
∏

u<t Xu is in TC0[pow]

I pick sufficiently long list of primes ~m
I convert each Xu to CRR ~m
I multiply the residues modulo each mi

I reconstruct the result from CRR ~m to binary

(2)
∏

u<t Xu is in AC0 if
∑

u<t |Xu| = (log n)O(1)

I scale (1) down

(3) pow is in AC0

I express exponents in CRR~d

pow: ar mod m (a, r unary, m unary prime)
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Structure of the algorithm

(0) imul is in TC0[pow]

I sum discrete logarithms modulo m

(1)
∏

u<t Xu is in TC0[imul]

I pick sufficiently long list of primes ~m
I convert each Xu to CRR ~m
I multiply the residues modulo each mi

I reconstruct the result from CRR ~m to binary

(2)
∏

u<t Xu is in AC0 if
∑

u<t |Xu| = (log n)O(1)

I scale (1) down

(3) pow is in AC0

I express exponents in CRR~d

imul:
∏

i<n ai mod m (n, ai unary, m unary prime)
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Obstacles to formalization

Complex structure with interdependent parts

Which came first: the chicken or the egg?

I CRR ~m reconstruction:
I analysis heavily uses iterated products and divisions:∏

i<k mi , . . .
I need CRR ~m reconstruction to define iterated products

and divisions in the first place

I computation of pow:
I analysis of the pow algorithm heavily uses pow
I relies on Fermat’s little theorem

I cyclicity of (Z/pZ)×:
I needed to compute imul in TC0[pow]
I notoriously difficult in bounded arithmetic
I provable in VTC 0 + IMUL, but what good is that?
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Results [J’20]

Theorem

VTC 0 ` IMUL

Corollary

I VTC 0 ` RSUV -translation of Σb
0-MIN

I C 0
2 ≡ C 0

2 [div ], proves Σb
0-MIN

Theorem

∃ ∆0 definition of ar mod m s.t. I∆0 + WPHP(∆0) `
a0 ≡ 1 (mod m), ar+1 ≡ ara (mod m)
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Overview of the formalization
I preparatory results

I VTC 0 ` there are enough primes
I VTC 0(pow) can do division bX/mc by small primes

(1) VTC 0(imul) ` IMUL
I hard part: CRR reconstruction
I teach VTC 0(imul) to compute in CRR from scratch

(2) V 0 ` IMUL
[
|w |c

]
I the polylogarithmic cut in V 0 is a model of VNL

(3) V 0 + WPHP ` totality of pow
I reorganize the [HAB’02] algorithm to avoid circularity

I can’t do (0) directly!
I structure theorem for finite abelian groups (partially)
I each turn around the vicious circle

IMUL→ cyclicity→ imul→ IMUL makes progress
=⇒ proof by induction
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Goal: CRR reconstruction

Theorem

∃ TC0(imul)-function Rec s.t. VTC 0(imul) proves:

~m distinct primes, |X | <
∑

i

(
|mi | − 1

)
=⇒ Rec

(
~m;CRR ~m(X )

)
= X

Corollary

VTC 0(imul) ` IMUL

Proof: ~m large enough =⇒ Yj := Rec
(
~m;
∏

i<j CRR ~m(Xi)
)

By induction on j , show |Yj | ≤
∑

i<j |Xi | and Yj+1 = XjYj
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Basic tool

Notation: [ ~m] =
∏

i<k mi , [ ~m]6=j =
∏

i 6=j mi

CRR rank equation

X < [ ~m], ~x = CRR ~m(X ) =⇒∑
i<k

xihi
mi

= r(~x) +
X

[ ~m]

where hi = [ ~m]−16=i mod mi

I rank r(~x): small integer
I holds in Q =⇒ approximation ξ( ~m; ~x) of X/[ ~m]
I holds in Z/aZ =⇒ base extension e( ~m; ~x ; a) = X mod a
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Rank and friends formalized

In VTC 0(imul): for large enough n, consider

Sn( ~m; ~x) =
∑
i<k

⌈
2nxihi
mi

⌉
rn( ~m; ~x) = b2−nSn( ~m; ~x)c
ξn( ~m; ~x) = 2−n

(
Sn( ~m; ~x) mod 2n

)
en( ~m; ~x ; a) =

∑
i<k

xihi [ ~m]6=i − rn( ~m; ~x)[ ~m] mod a

The laborious part:

I prove lots of properties of rn, ξn, en from first principles

I use them to analyze the reconstruction procedure
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The polylogarithmic cut

M = 〈M1,M2,∈, |·|, 0, 1,+, ·, <〉 � V 0

=⇒ Mpl = 〈Mpl,1,Mpl,2, . . . 〉 where

Mpl,1 = {x ∈ M1 : ∃c ∈ ωM � ∃w x ≤ |w |c}
Mpl,2 = {X ∈ M2 : |X | ∈ Mpl,1}

Using the idea of Nepomnjaščij’s theorem:

I [Zam’97] (implicitly) M � V 0 =⇒ Mpl � VL

I [Mül’13] M � V 0 =⇒ Mpl �VNC
1

I similar formalization in [Ats’03]

Lemma

M � V 0 =⇒ Mpl � VNL
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Polylogarithmic products

Lemma

VTC 0(imul) ⊆ VL

Corollary

For any constant c , V 0 can do:

I
∏

i<n Xi if
∑

i |Xi | ≤ |w |c

I bY /X c if |X |, |Y | ≤ |w |c

I
∏

i<n ai mod m if n ≤ |w |c

Emil Jěrábek Iterated multiplication in VTC0 JAF40 Athens 19:24



Modular exponentiation

1 TC0, VTC 0, and IMUL

2 Hesse–Allender–Barrington algorithm

3 Working with CRR

4 Polylogarithmic cut

5 Modular exponentiation

6 The grand scheme



The [HAB’02] algorithm

To compute ar for a ∈ (Z/mZ)×, n = ϕ(m) = |(Z/mZ)×|:

I fix sequence ~d of primes s.t. di = O(log n), di - n
d =

∏
i di : n < d < nO(1)

I x 7→ xdi an automorphism =⇒ AC0 inverse x 7→ x1/di

I given r , find ui = O(log n), u = O
(
(log n)2

)
s.t.

r ≡ u +
∑
i

ui

⌊
n

di

⌋
(mod n)

I using an = 1, compute ai = abn/dic = a−(n mod di )/di ,
ar = au

∏
i a

ui
i

Analysis requires: modular exponentiation (chicken or egg?),
Fermat’s little theorem
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Drop abn/dic, just use a1/di directly

To compute ar for a ∈ (Z/mZ)×, n = ϕ(m) = |(Z/mZ)×|:

I fix sequence ~d of primes s.t. di = O(log n), di - n
d =

∏
i di : n < d < nO(1)

I x 7→ xdi an automorphism =⇒ AC0 inverse x 7→ x1/di

I given s < 2d , find ui , u = O(log n) s.t.

s

d
= u +

∑
i

ui
di

(CRR~d rank equation)

I compute as/d := au
∏

i(a
1/di )ui

I WPHP =⇒ as/d is t-periodic for some t ≤ 2n
=⇒ extend the definition of as/d to all s by a(s mod t)/d

I put ar = a(rd)/d
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Modular exponentiation formalized

Theorem

V 0 + WPHP ⊆ VTC 0 proves the totality of pow

Also extends to non-prime m

Using conservativity, can do it in I∆0 + WPHP(∆0):

Theorem

∃ ∆0 definition of ar mod m s.t. I∆0 + WPHP(∆0) `

a0 ≡ 1 (mod m),

ar+1 ≡ ara (mod m)
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Cyclic generators

Still missing: VTC 0
?

` m prime → (Z/mZ)× is cyclic

=⇒ VTC 0 = VTC 0(pow) = VTC 0(imul)

Lemma

The following are equivalent over VTC 0:

I IMUL

I m prime → (Z/mZ)× is cyclic

I m, p primes, a 6≡ 1 ≡ ap ≡ bp (mod m)
→ ∃r < p b ≡ ar (mod m)

Can we escape this vicious circle?
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VTC 0 proves IMUL

Fine-tune the parameters:

I IMUL[x ], imul[x ], Cyc[z , x ]

I VTC 0 proves

imul[x3]→ IMUL[x ]

IMUL
[
x2|z |

]
→ Cyc[z , x ]

Cyc[z , x ]→ imul
[
min{z , xc |z |c}

]
(new idea: structure theorem for finite abelian groups)

∴ (x + 1)6|z |3 ≤ z ∧ Cyc[z , x ]→ Cyc[z , x + 1]

I finish the proof by induction on x
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VTC 0 proves IMUL

Fine-tune the parameters:

I IMUL[x ], imul[x ], Cyc[z , x ]

∃
∏

i<n Xi whenever
∑

i |Xi | ≤ x
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VTC 0 proves IMUL

Fine-tune the parameters:
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∏
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VTC 0 proves IMUL

Fine-tune the parameters:

I IMUL[x ], imul[x ], Cyc[z , x ] (Cyc ∈ ΣB
0 )

m ≤ z and p < x primes, a 6≡ 1 ≡ ap ≡ bp (mod m)

=⇒ ∃r < p b ≡ ar (mod m)

I VTC 0 proves
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Summary

I VTC 0 proves IMUL

I VTC 0 proves RSUV -translation of Σb
0-MIN

I C 0
2 ≡ C 0

2 [div ], proves Σb
0-MIN

I I∆0 + WPHP(∆0) has a well-behaved
∆0 definition of ar mod m
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