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Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and
computational complexity classes C:

» Provably total computable functions of T are C-functions

» T can do reasoning using C-predicates
(comprehension, induction, . ..)

Feasible reasoning:

» Given a natural concept X € C, what can we prove about
X using only concepts from C?

» That is: what does T prove about X7

This talk:
X = elementary integer arithmetic operations +, -, <
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The class TC’

AC° CACC°C TC°CNC!CLCNLCAC!C.---CP

TC® = dlogtime-uniform O(1)-depth n®M-size
unbounded fan-in circuits with threshold gates
= FOM-definable on finite structures
representing strings
(first-order logic with majority quantifiers)
= O(log n) time, O(1) thresholds

on a threshold Turing machine
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TC? and arithmetic operations

For integers given in binary:

» + and < are in AC° C TC®
> x isin TC® (TCcomplete under AC® reductions)

TCO can also do:

> iterated addition >, , X;
» integer division and iterated multiplication
[BCH'86,CDL'01,HAB'02]
» the corresponding operations on Q, Q(/)
» approximate functions given by nice power series:
> sin X, log X, VX, L.
» sorting, ...
— TCC is the right class for basic arithmetic operations
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Buss-style bounded arithmetic

One-sorted theories of bounded arithmetic:
» language (0,1, +,-, <, [x/2], |x|,#)
» 3 ) formulas: sharply bounded q'fiers Ix < |t], Vx < [t|
» 5 formulas: i alternating blocks of bounded quantifiers
(first block ) followed by a ¥§ formula
> T) = BASIC + 51-IND, S} = BASIC + $-b-LIND
> L=U T=US=/0+N

Johannsen and Pollett’s theories for TC?:
» language with —, |x/2” |
» all theories include open LIND
> O BBY: [JP'98]
> CY[div]: language incl. |x/y| [Joh'99]
» AL-CR: AP bit-comprehension rule [JP'00]
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Zambella-style bounded arithmetic

Two-sorted bounded arithmetic:

» unary (auxiliary) integers with 0,1, +, -, <

» finite sets = binary integers = binary strings
xe X, [ X =sup{x+1:xe X}

» bounded quantifiers: dx < t, Vx <t, AX <t, VX <t
where X < t is short for |[X| <t

Z(’)B formulas: bounded FO, no SO quantifiers

» 3B formulas: i alternating blocks of bounded quantifiers
(first block J) followed by a ¥ formula

» V' =2-BASIC + ¥8-COMP (implies £2-IND)

v
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The theory VTC°

The two-sorted theory corresponding to TC® is VTC°:
» VO 4 every set has a counting function
> provably total computable (i.e., IX5-definable) functions
are exactly the TC’-functions
» has induction, comprehension, minimization, ...
for TC -predicates

Binary arithmetic in VTC°:

» can define +, -, < on binary integers
» proves integers form a discretely ordered ring
» iterated multiplication challenging = axiom IMUL:

VX, n3YVi<j<n(Yiy=1A Y=Yy, X)
(think Y7, = [T\ X&)
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RSUV isomorphism

two-sorted arithmetic

one-sorted arithmetic

sets

numbers

bounded SO quantifiers
bounded FO quantifiers

numbers
logarithmic numbers
bounded quantifiers

sharply bounded quantifiers

Y5 y b

Vi S

TV Ti

vTCe AP-CR

VTP +3¥B-AC| C)

VTC® + IMUL + £8-AC | C[div]
(i=1)
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Arithmetic in VTC° + IMUL / CY[div]

Besides division, VTC® 4 IMUL / C9[div] can do:

» root approximation for constant-degree polynomials
» — (RSUV-translation of) open induction (/Open)

Even better (using ideas of [Man'91]):
Theorem [J’15]

» VTC?+ IMUL proves the RSUV-translations of
Y5-IND (T2) and X5-MIN

> CY[div] proves ¥5-IND, ¥-5-MIN
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Does VTC® prove IMUL?

Iterated multiplication is TC°-computable:

Can VTC® formalize the algorithms from [HAB'02]?
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History

[BCH'86]
> 1., X, [Y/X], X" are TC’reducible to each other
> they are in P-uniform TC°
» compute the product in Chinese remainder representation:
CRR&#(X) = (X mod m; : i < k)
where i = (m; : i < k) small primes
> (NB: predates definition of TC®)

Improved CRR reconstruction procedures —

» [CDL'01]: logspace-uniform TC® (hence L)
> [HAB'02]: dlogtime-uniform TC°
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Structure of the algorithm

(1) II,.. Xy isin TC[pow]

> pick sufficiently long list of primes ni

» convert each X, to CRR

» multiply the residues modulo each m;

» reconstruct the result from CRR; to binary

(2) TI,.. Xuisin AC%if 3, _,|Xu| = (log n)°W
> scale (1) down

(3) pow is in AC°
> express exponents in CRR ;

pow: a" mod m (a, r unary, m unary prime)
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Structure of the algorithm

(0) imul is in TC°[pow]
» sum discrete logarithms modulo m

(1) J[,..Xuisin TC[imul]

> pick sufficiently long list of primes ni

» convert each X, to CRRz

» multiply the residues modulo each m;

» reconstruct the result from CRR; to binary

(2) TI,.. Xuisin AC%if 3, _,|Xu| = (log n)°W
> scale (1) down

(3) pow is in AC°
> express exponents in CRR ;

imul: [[,_, a mod m (n,a; unary, m unary prime)
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Obstacles to formalization

Complex structure with interdependent parts
Which came first: the chicken or the egg?

» CRR reconstruction:
» analysis heavily uses iterated products and divisions:
[Tick mis .
» need CRR; reconstruction to define iterated products
and divisions in the first place
» computation of pow:
> analysis of the pow algorithm heavily uses pow
> relies on Fermat's little theorem
» cyclicity of (Z/pZ)*:
» needed to compute imul in TC[pow]
» notoriously difficult in bounded arithmetic
» provable in VTC® + IMUL, but what good is that?
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VTC® - IMUL |

» VTC®F RSUV-translation of ¥&-MIN
> CY = C[div], proves L5-MIN

3 Ag definition of a” mod m s.t. IAg + WPHP(Ag) F

=1 (mod m), att=3a"a (mod m)




Overview of the formalization

» preparatory results
» VTCO+ there are enough primes
> VTC%pow) can do division | X/m| by small primes
(1) vTC®(imul) - IMUL
» hard part: CRR reconstruction
> teach VTCO(imul) to compute in CRR from scratch
(2) VO IMULUWH
» the polylogarithmic cut in V0 is a model of VL
(3) V°+ WPHP I totality of pow
> reorganize the [HAB'02] algorithm to avoid circularity
» can't do (0) directly!
> structure theorem for finite abelian groups (partially)
> each turn around the vicious circle
IMUL — cyclicity — imul — IMUL makes progress
= proof by induction
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3 TC°(imul)-function Rec s.t. VTC?(imul) proves:
i distinct primes, [X| < >, (|m;| — 1)
= Rec(m; CRR5(X)) = X

VTC®(imul) - IMUL

Proof: i large enough = Y; := Rec(rm; [];_; CRR5(X)))

By induction on j, show |Y;| < 37, _/[Xi| and Yj.1 = X;V;



Notation: [ri] =[], , mi, [m]4 = [1;; mi

X <[], ¥ = CRR4(X) =

S =

i<k !

where h; = [rﬁ];,1 mod m;

» rank r(x): small integer
» holds in Q == approximation £(ri; X) of X/[ni]
» holds in Z/aZ = base extension e(ni; X; a) = X mod a



Rank and friends formalized

In VTC®(imul): for large enough n, consider

s 7) = 3 [ 220
i<k !
ra(m; X) = [27"5,(r; X)]
&n(rh; X) = 27"(S,(m; X) mod 2")
en(m; X; a) = ZXihi[rﬁ];ﬁi — rp(mi; X)[m]  mod a
i<k

The laborious part:

» prove lots of properties of r,, &, e, from first principles

» use them to analyze the reconstruction procedure
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M = <M17 M27 €, |'|507 17"‘, * <> E VO
= My = (My1, Mo, ...) where

My ={xe M :FccwMEIwx <|w|[}
Mpl,2 = {X S Mz : |X| € Mpl,l}
Using the idea of Nepomnjas¢ij's theorem:

> [Zam'97] (implicitly) M E V° = M E VL
> [Mil'l3] M E VO = M, EVNC!
» similar formalization in [Ats'03]

MEV — M,k VNL




VTC®(imul) C VL

For any constant ¢, V° can do:
> [ Xi i 201X < [wl
> LY/XTIE X Y] < |wle
» [[,.,aimod mif n <|w|
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The [HAB’02] algorithm

To compute a” for a € (Z/mZ)*, n = p(m) = |(Z/mZ)*|:
> fix sequence d of primes s.t. d; = O(log n), d; { n
d=][.d: n<d<nW
> x — x% an automorphism = ACC inverse x — x'/%
> given r, find u; = O(log n), u = O((log n)?) s.t.

rzu+zi:u,-m (mod n)

1

> using 2" = 1, compute a; = al"/ 4l = g~ (nmod d)/di.

o=l

Analysis requires: modular exponentiation (chicken or egg?),

Fermat's little theorem
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Drop al"/9], just use a/% directly

To compute a” for a € (Z/mZ)*, n = p(m) = |(Z/mZ)*|:
> fix sequence d of primes s.t. d; = O(log n), d; { n
d=][.d: n<d<nW
> x — x% an automorphism = ACC inverse x — x'/%
> given s < 2d, find u;, u = O(log n) s.t.

2 =u+ Z,: %: (CRRj rank equation)

> compute a¥/? := 2" [];(a%/4)"
» WPHP — 2°/9is t-periodic for some t < 2n
— extend the definition of a%¢ to all s by a(*™ed®)/d

> put 3 = a(rd)/d
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VO + WPHP C VTCP proves the totality of pow

Also extends to non-prime m

Using conservativity, can do it in /A + WPHP(Ay):

3 Ay definition of a” mod m s.t. 1A + WPHP(Ao) F

2% =1 (mod m),

att=aa (mod m)
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?
Still missing: VTC® = m prime — (Z/mZ)* is cyclic
= VTC® = VTC’(pow) = VTC®(imul)

The following are equivalent over VTC?:
> IMUL
» m prime — (Z/mZ)* is cyclic
» m,p primes, a % 1= a” = bP (mod m)
—3dr<pb=a" (mod m)

Can we escape this vicious circle?



Fine-tune the parameters:

» IMUL[x], imul[x], Cyc|z, x]



Fine-tune the parameters:
» IMUL[x], imul[x], Cyc|z, x]
3 [],_, Xi whenever > [X;| < x



Fine-tune the parameters:
» IMUL[x], imul[x], Cyc|z, x]

3 J],_,a mod m whenever m < x prime



Fine-tune the parameters:
» IMUL[x], imul[x], Cyc|z, x] (Cyc € £§)

m < zand p < x primes, a# 1 =2a"=b" (mod m)
= dr<pb=a" (mod m)



VTC® proves IMUL

Fine-tune the parameters:

» IMUL[x], imul[x], Cyc[z,x] (Cyc € £¥)
» VTCP proves

imul[x*] — IMUL|[x]
IMUL[x?|z|] = Cyc[z,x]
Cyclz, x] — imul[min{z, x|z|}]

(new idea: structure theorem for finite abelian groups)
S (x + 1)z < zA Cyelz, x] — Cyclz, x +1]
» finish the proof by induction on x
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> VTCO proves IMUL
> VTCP proves RSUV-translation of ¥5-MIN
> CY = C[div], proves L5-MIN

> [Ag+ WPHP(A) has a well-behaved
Aq definition of a” mod m
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