Iterated multiplication in $V T C^{0}$

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics, Czech Academy of Sciences, Prague

Journées sur les Arithmétiques Faibles 40 October 2021, Athens

Outline

(1) TC ${ }^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
(3) Working with CRR
(4) Polylogarithmic cut

5 Modular exponentiation
(6) The grand scheme

$T C^{0}, V T C^{0}$, and $I M U L$

(1) $T C^{0}, V T C^{0}$, and $I M U L$

2 Hesse-Allender-Barrington algorithm
(3) Working with CRR
(4) Polylogarithmic cut
(5) Modular exponentiation
(6) The grand scheme

Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and computational complexity classes C :

- Provably total computable functions of T are C-functions
- T can do reasoning using C-predicates (comprehension, induction, ...)

Feasible reasoning:

- Given a natural concept $X \in C$, what can we prove about X using only concepts from C ?
- That is: what does T prove about X ?

This talk:
$X=$ elementary integer arithmetic operations $+, \cdot, \leq$

The class TC^{0}

$\mathbf{A C}^{0} \subseteq \mathbf{A C C}^{0} \subseteq \mathbf{T C}^{0} \subseteq \mathbf{N C}^{1} \subseteq \mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{A C}^{1} \subseteq \cdots \subseteq \mathbf{P}$

$\mathrm{TC}^{0}=$ dlogtime-uniform $O(1)$-depth $n^{O(1)}$-size unbounded fan-in circuits with threshold gates
$=$ FOM-definable on finite structures representing strings
(first-order logic with majority quantifiers)
$=O(\log n)$ time, $O(1)$ thresholds on a threshold Turing machine

TC ${ }^{0}$ and arithmetic operations

For integers given in binary:
-+ and \leq are in $\mathbf{A C}^{0} \subseteq \mathbf{T C}^{0}$
$-\times$ is in TC 0 (CC 0-complete under $\mathbf{A C}^{0}$ reductions)
TC ${ }^{0}$ can also do:

- iterated addition $\sum_{i<n} X_{i}$
- integer division and iterated multiplication [BCH'86,CDL'01,HAB'02]
- the corresponding operations on $\mathbb{Q}, \mathbb{Q}(i)$
- approximate functions given by nice power series:
- $\sin X, \log X, \sqrt[k]{X}, \ldots$
- sorting, ...
\Longrightarrow TC 0 is the right class for basic arithmetic operations

Buss-style bounded arithmetic

One-sorted theories of bounded arithmetic:

- language $\langle 0,1,+, \cdot, \leq,\lfloor x / 2\rfloor| x,|, \#\rangle$
- \sum_{0}^{b} formulas: sharply bounded q'fiers $\exists x \leq|t|, \forall x \leq|t|$
- $\hat{\Sigma}_{i}^{b}$ formulas: i alternating blocks of bounded quantifiers
(first block \exists) followed by a Σ_{0}^{b} formula
- $T_{2}^{i}=B A S I C+\hat{\Sigma}_{i}^{b}-I N D, S_{2}^{i}=B A S I C+\hat{\Sigma}_{i}^{b}-L I N D$
- $T_{2}=\bigcup_{i} T_{2}^{i}=\bigcup_{i} S_{2}^{i} \cong I \Delta_{0}+\Omega_{1}$

Johannsen and Pollett's theories for $\mathbf{T C}^{0}$:

- language with,$-\left\lfloor x / 2^{y}\right\rfloor$
- all theories include open LIND
- $C_{2}^{0}: B B \Sigma_{0}^{b}$ [JP'98]
- $C_{2}^{0}[d i v]$: language incl. $\lfloor x / y\rfloor$ [Joh'99]
$-\Delta_{1}^{b}$ - CR: Δ_{1}^{b} bit-comprehension rule [JP'00]

Zambella-style bounded arithmetic

Two-sorted bounded arithmetic:

- unary (auxiliary) integers with $0,1,+, \cdot, \leq$
- finite sets $=$ binary integers $=$ binary strings
$x \in X,|X|=\sup \{x+1: x \in X\}$
- bounded quantifiers: $\exists x \leq t, \forall x \leq t, \exists X \leq t, \forall X \leq t$ where $X \leq t$ is short for $|X| \leq t$
- \sum_{0}^{B} formulas: bounded FO, no SO quantifiers
- \sum_{i}^{B} formulas: i alternating blocks of bounded quantifiers (first block \exists) followed by a Σ_{0}^{B} formula
- $V^{i}=2-B A S I C+\sum_{i}^{B}-C O M P\left(\right.$ implies $\left.\sum_{i}^{B}-I N D\right)$

The theory VTC ${ }^{0}$

The two-sorted theory corresponding to $\mathbf{T C}^{0}$ is $V T C^{0}$:

- $V^{0}+$ every set has a counting function
- provably total computable (i.e., $\exists \Sigma_{0}^{B}$-definable) functions are exactly the $\mathbf{T C}^{0}$-functions
- has induction, comprehension, minimization, ... for TC 0-predicates
Binary arithmetic in VTC ${ }^{0}$:
- can define $+, \cdot, \leq$ on binary integers
- proves integers form a discretely ordered ring
- iterated multiplication challenging \Longrightarrow axiom IMUL:

$$
\forall X, n \exists Y \forall i \leq j<n\left(Y_{i, i}=1 \wedge Y_{i, j+1}=Y_{i, j} \cdot X_{j}\right)
$$

(think $\left.Y_{i, j}=\prod_{k=i}^{j-1} X_{k}\right)$

RSUV isomorphism

two-sorted arithmetic	one-sorted arithmetic
sets	numbers
numbers	logarithmic numbers
bounded SO quantifiers	bounded quantifiers
bounded FO quantifiers	sharply bounded quantifiers
Σ_{i}^{B}	$\hat{\Sigma}_{i}^{b}$
V^{i}	S_{2}^{i}
$T V^{i}$	T_{2}^{i}
$V T C^{0}$	$\Delta_{1}^{b}-C R$
$V T C^{0}+\Sigma_{0}^{B}-A C$	C_{2}^{0}
$V T C^{0}+I M U L+\Sigma_{0}^{B}-A C$	$C_{2}^{0}[$ div $]$

$$
(i \geq 1)
$$

Arithmetic in $V T C^{0}+I M U L / C_{2}^{0}[$ div $]$

Besides division, $V T C^{0}+I M U L / C_{2}^{0}[d i v]$ can do:

- root approximation for constant-degree polynomials
- \Longrightarrow (RSUV-translation of) open induction (IOpen)

Even better (using ideas of [Man'91]):

Theorem [J'15]

- $V T C^{0}+I M U L$ proves the RSUV-translations of $\Sigma_{0}^{b}-I N D\left(T_{2}^{0}\right)$ and $\Sigma_{0}^{b}-M I N$
- $C_{2}^{0}[d i v]$ proves $\sum_{0}^{b}-I N D, \Sigma_{0}^{b}-M I N$

What remains

Question

Does $V T C^{0}$ prove IMUL?

Iterated multiplication is $\mathbf{T C}^{0}$-computable:

Question

Can $V T C^{0}$ formalize the algorithms from [HAB'02]?

Hesse-Allender-Barrington algorithm

1) TC $^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
2) Working with CRR
(4) Polylogarithmic cut

5 Modular exponentiation
6 The grand scheme

History

[BCH'86]
$-\prod_{i<n} X_{i},\lfloor Y / X\rfloor, X^{n}$ are $\mathbf{T C}^{0}$-reducible to each other

- they are in P -uniform $\mathbf{T C}^{0}$
- compute the product in Chinese remainder representation:

$$
\operatorname{CRR}_{\vec{m}}(X)=\left\langle X \bmod m_{i}: i<k\right\rangle
$$

where $\vec{m}=\left\langle m_{i}: i<k\right\rangle$ small primes

- (NB: predates definition of $\mathbf{T C}^{0}$)

Improved CRR reconstruction procedures \Longrightarrow

- [CDL'01]: logspace-uniform $\mathbf{T C}^{0}$ (hence \mathbf{L})
- [HAB'02]: dlogtime-uniform TC 0

Structure of the algorithm

(1) $\prod_{u<t} X_{u}$ is in $\mathrm{TC}^{0}[$ pow]

- pick sufficiently long list of primes \vec{m}
- convert each X_{u} to $\mathrm{CRR}_{\vec{m}}$
- multiply the residues modulo each m_{i}
- reconstruct the result from $\mathrm{CRR}_{\vec{m}}$ to binary
(2) $\prod_{u<t} X_{u}$ is in $\mathbf{A C}^{0}$ if $\sum_{u<t}\left|X_{u}\right|=(\log n)^{O(1)}$
- scale (1) down
(3) pow is in AC^{0}
- express exponents in $\mathrm{CRR}_{\vec{d}}$
pow: $a^{r} \bmod m \quad(a, r$ unary, m unary prime)

Structure of the algorithm

(0) imul is in TC^{0} [pow]

- sum discrete logarithms modulo m
(1) $\prod_{u<t} X_{u}$ is in $\mathrm{TC}^{0}[\mathrm{imul}]$
- pick sufficiently long list of primes \vec{m}
- convert each X_{u} to $\mathrm{CRR}_{\vec{m}}$
- multiply the residues modulo each m_{i}
- reconstruct the result from $\mathrm{CRR}_{\vec{m}}$ to binary
(2) $\prod_{u<t} X_{u}$ is in $\mathbf{A C}^{0}$ if $\sum_{u<t}\left|X_{u}\right|=(\log n)^{O(1)}$
- scale (1) down
(3) pow is in $\mathbf{A C}^{0}$
- express exponents in $\mathrm{CRR}_{\vec{d}}$
imul: $\prod_{i<n} a_{i} \bmod m \quad\left(n, a_{i}\right.$ unary, m unary prime $)$

Obstacles to formalization

Complex structure with interdependent parts
Which came first: the chicken or the egg?
$-\mathrm{CRR}_{\vec{m}}$ reconstruction:

- analysis heavily uses iterated products and divisions: $\prod_{i<k} m_{i}, \ldots$
- need $\mathrm{CRR}_{\vec{m}}$ reconstruction to define iterated products and divisions in the first place
- computation of pow:
- analysis of the pow algorithm heavily uses pow
- relies on Fermat's little theorem
- cyclicity of $(\mathbb{Z} / p \mathbb{Z})^{\times}$:
- needed to compute imul in TC 0 [pow]
- notoriously difficult in bounded arithmetic
- provable in VTC ${ }^{0}+I M U L$, but what good is that?

Results [J'20]

Theorem

$$
V T C^{0} \vdash I M U L
$$

Corollary

- VTC ${ }^{0} \vdash R S U V$-translation of $\Sigma_{0}^{b}-M I N$
- $C_{2}^{0} \equiv C_{2}^{0}[d i v]$, proves $\sum_{0}^{b}-M I N$

Theorem

$\exists \Delta_{0}$ definition of $a^{r} \bmod m$ s.t. $I \Delta_{0}+W P H P\left(\Delta_{0}\right) \vdash$

$$
a^{0} \equiv 1 \quad(\bmod m), \quad a^{r+1} \equiv a^{r} a \quad(\bmod m)
$$

Overview of the formalization

- preparatory results
- $V T C^{0} \vdash$ there are enough primes
- VTC ${ }^{0}$ (pow) can do division $\lfloor X / m\rfloor$ by small primes
(1) $V T C^{0}($ imul $) \vdash I M U L$
- hard part: CRR reconstruction
- teach $V T C^{0}$ (imul) to compute in CRR from scratch
(2) $V^{0} \vdash \operatorname{IMUL}\left[|w|^{c}\right]$
- the polylogarithmic cut in V^{0} is a model of VNL
(3) $V^{0}+W P H P \vdash$ totality of pow
- reorganize the [HAB'02] algorithm to avoid circularity
- can't do (0) directly!
- structure theorem for finite abelian groups (partially)
- each turn around the vicious circle

IMUL \rightarrow cyclicity \rightarrow imul \rightarrow IMUL makes progress
\Longrightarrow proof by induction

Working with CRR

(1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
(3) Working with CRR
(4) Polylogarithmic cut

5 Modular exponentiation
6 The grand scheme

Goal: CRR reconstruction

Theorem

$\exists \mathbf{T C}^{0}$ (imul)-function Rec s.t. VTC ${ }^{0}$ (imul) proves:
\vec{m} distinct primes, $|X|<\sum_{i}\left(\left|m_{i}\right|-1\right)$
$\Longrightarrow \operatorname{Rec}\left(\vec{m} ; \operatorname{CRR}_{\vec{m}}(X)\right)=X$

Corollary

$$
V T C^{0}(\text { imul }) \vdash I M U L
$$

Proof: \vec{m} large enough $\Longrightarrow Y_{j}:=\operatorname{Rec}\left(\vec{m} ; \prod_{i<j} \operatorname{CRR}_{\vec{m}}\left(X_{i}\right)\right)$
By induction on j, show $\left|Y_{j}\right| \leq \sum_{i<j}\left|X_{i}\right|$ and $Y_{j+1}=X_{j} Y_{j}$

Basic tool

Notation: $[\vec{m}]=\prod_{i<k} m_{i},[\vec{m}]_{\neq j}=\prod_{i \neq j} m_{i}$

CRR rank equation

$$
X<[\vec{m}], \vec{x}=\operatorname{CRR}_{\vec{m}}(X) \Longrightarrow
$$

$$
\sum_{i<k} \frac{x_{i} h_{i}}{m_{i}}=r(\vec{x})+\frac{X}{[\vec{m}]}
$$

where $h_{i}=[\vec{m}]_{\neq i}^{-1} \bmod m_{i}$

- rank $r(\vec{x})$: small integer
- holds in $\mathbb{Q} \Longrightarrow$ approximation $\xi(\vec{m} ; \vec{x})$ of $X /[\vec{m}]$
- holds in $\mathbb{Z} / a \mathbb{Z} \Longrightarrow$ base extension $e(\vec{m} ; \vec{x} ; a)=X \bmod a$

Rank and friends formalized

In $V T C^{0}$ (imul): for large enough n, consider

$$
\begin{aligned}
S_{n}(\vec{m} ; \vec{x}) & =\sum_{i<k}\left\lceil\frac{2^{n} x_{i} h_{i}}{m_{i}}\right\rceil \\
r_{n}(\vec{m} ; \vec{x}) & =\left\lfloor 2^{-n} S_{n}(\vec{m} ; \vec{x})\right\rfloor \\
\xi_{n}(\vec{m} ; \vec{x}) & =2^{-n}\left(S_{n}(\vec{m} ; \vec{x}) \bmod 2^{n}\right) \\
e_{n}(\vec{m} ; \vec{x} ; a) & =\sum_{i<k} x_{i} h_{i}[\vec{m}]_{\neq i}-r_{n}(\vec{m} ; \vec{x})[\vec{m}] \quad \bmod a
\end{aligned}
$$

The laborious part:

- prove lots of properties of r_{n}, ξ_{n}, e_{n} from first principles
- use them to analyze the reconstruction procedure

Polylogarithmic cut

(1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
(3) Working with CRR
(4) Polylogarithmic cut

5 Modular exponentiation
6 The grand scheme

The polylogarithmic cut

$$
\begin{aligned}
\mathcal{M}= & \left\langle M_{1}, M_{2}, \in,\right| \cdot|, 0,1,+, \cdot,<\rangle \vDash V^{0} \\
\Longrightarrow & \mathcal{M}_{\mathrm{pl}}=\left\langle M_{\mathrm{pl}, 1}, M_{\mathrm{pl}, 2}, \ldots\right\rangle \text { where } \\
& M_{\mathrm{pl}, 1}=\left\{x \in M_{1}: \exists c \in \omega \mathcal{M} \vDash \exists w x \leq|w|^{c}\right\} \\
& M_{\mathrm{pl}, 2}=\left\{X \in M_{2}:|X| \in M_{\mathrm{pl}, 1}\right\}
\end{aligned}
$$

Using the idea of Nepomnjaščij's theorem:

- [Zam'97] (implicitly) $\mathcal{M} \vDash V^{0} \Longrightarrow \mathcal{M}_{\mathrm{pl}} \vDash V L$
- [Mül'13] $\mathcal{M} \vDash V^{0} \Longrightarrow \mathcal{M}_{\mathrm{pl}} \vDash V N C^{1}$
- similar formalization in [Ats'03]

Lemma

$$
\mathcal{M} \vDash V^{0} \Longrightarrow \mathcal{M}_{\mathrm{pl}} \vDash V N L
$$

Polylogarithmic products

Lemma

$V T C^{0}(\mathrm{imul}) \subseteq V L$

Corollary

For any constant c, V^{0} can do:

- $\prod_{i<n} X_{i}$ if $\sum_{i}\left|X_{i}\right| \leq|w|^{c}$
- $\lfloor Y / X\rfloor$ if $|X|,|Y| \leq|w|^{c}$
- $\prod_{i<n} a_{i} \bmod m$ if $n \leq|w|^{c}$

Modular exponentiation

1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm

3 Working with CRR
4 Polylogarithmic cut
(5) Modular exponentiation

6 The grand scheme

The [HAB'02] algorithm

To compute a^{r} for $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}, n=\varphi(m)=\left|(\mathbb{Z} / m \mathbb{Z})^{\times}\right|$:

- fix sequence \vec{d} of primes s.t. $d_{i}=O(\log n), d_{i} \nmid n$

$$
d=\prod_{i} d_{i}: n<d<n^{O(1)}
$$

- $x \mapsto x^{d_{i}}$ an automorphism $\Longrightarrow \mathbf{A C}^{0}$ inverse $x \mapsto x^{1 / d_{i}}$
- given r, find $u_{i}=O(\log n), u=O\left((\log n)^{2}\right)$ s.t.

$$
r \equiv u+\sum_{i} u_{i}\left\lfloor\frac{n}{d_{i}}\right\rfloor \quad(\bmod n)
$$

- using $a^{n}=1$, compute $a_{i}=a^{\left\lfloor n / d_{i}\right\rfloor}=a^{-\left(n \bmod d_{i}\right) / d_{i}}$,

$$
a^{r}=a^{u} \prod_{i} a_{i}^{u_{i}}
$$

Analysis requires: modular exponentiation (chicken or egg?), Fermat's little theorem

Drop $a^{\left\lfloor n / d_{i}\right\rfloor}$, just use $a^{1 / d_{i}}$ directly

To compute a^{r} for $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}, n=\varphi(m)=\left|(\mathbb{Z} / m \mathbb{Z})^{\times}\right|$:

- fix sequence \vec{d} of primes s.t. $d_{i}=O(\log n), d_{i} \nmid n$

$$
d=\prod_{i} d_{i}: n<d<n^{O(1)}
$$

$\triangleright x \mapsto x^{d_{i}}$ an automorphism $\Longrightarrow \mathbf{A C}^{0}$ inverse $x \mapsto x^{1 / d_{i}}$

- given $s<2 d$, find $u_{i}, u=O(\log n)$ s.t.

$$
\frac{s}{d}=u+\sum_{i} \frac{u_{i}}{d_{i}} \quad\left(\mathrm{CRR}_{\vec{d}} \text { rank equation }\right)
$$

- compute $a^{s / d}:=a^{u} \prod_{i}\left(a^{1 / d_{i}}\right)^{u_{i}}$
- WPHP $\Longrightarrow a^{s / d}$ is t-periodic for some $t \leq 2 n$
\Longrightarrow extend the definition of $a^{s / d}$ to all s by $a^{(s \bmod t) / d}$
- put $a^{r}=a^{(r d) / d}$

Modular exponentiation formalized

Theorem

$V^{0}+W P H P \subseteq V T C^{0}$ proves the totality of pow

Also extends to non-prime m
Using conservativity, can do it in $I \Delta_{0}+W P H P\left(\Delta_{0}\right)$:

Theorem

$\exists \Delta_{0}$ definition of $a^{r} \bmod m$ s.t. $I \Delta_{0}+W P H P\left(\Delta_{0}\right) \vdash$

$$
\begin{aligned}
a^{0} & \equiv 1 \quad(\bmod m) \\
a^{r+1} & \equiv a^{r} a \quad(\bmod m)
\end{aligned}
$$

The grand scheme

(1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
3) Working with CRR

4 Polylogarithmic cut
(5) Modular exponentiation
(6) The grand scheme

Cyclic generators

Still missing: VTC $C^{0} \stackrel{?}{\vdash} m$ prime $\rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$is cyclic $\Longrightarrow V T C^{0}=V T C^{0}($ pow $)=V T C^{0}($ imul $)$

Lemma

The following are equivalent over $V T C^{0}$:

- IMUL
- m prime $\rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$is cyclic
- m, p primes, $a \not \equiv 1 \equiv a^{p} \equiv b^{p}(\bmod m)$
$\rightarrow \exists r<p b \equiv a^{r}(\bmod m)$

Can we escape this vicious circle?

VTC ${ }^{0}$ proves IMUL

Fine-tune the parameters:

- $\operatorname{IMUL}[x], \operatorname{imul}[x], \operatorname{Cyc}[z, x]$

VTC ${ }^{0}$ proves IMUL

Fine-tune the parameters:

- IMUL[x], imul[x], Cyc $[z, x]$

$$
\exists \prod_{i<n} X_{i} \text { whenever } \sum_{i}\left|X_{i}\right| \leq x
$$

VTC ${ }^{0}$ proves IMUL

Fine-tune the parameters:

- IMUL[x], imul $[x]$, Cyc $[z, x]$
$\exists \prod_{i<n} a_{i} \bmod m$ whenever $m \leq x$ prime

VTC ${ }^{0}$ proves IMUL

Fine-tune the parameters:

- IMUL[x], imul $[x], C y c[z, x]\left(C y c \in \Sigma_{0}^{B}\right)$

$$
\begin{array}{r}
m \leq z \text { and } p<x \text { primes, } a \not \equiv 1 \equiv a^{p} \equiv b^{p} \quad(\bmod m) \\
\Longrightarrow \exists r<p b \equiv a^{r} \quad(\bmod m)
\end{array}
$$

VTC ${ }^{0}$ proves IMUL

Fine-tune the parameters:
$-\operatorname{IMUL}[x]$, imul $[x], C y c[z, x]\left(C y c \in \Sigma_{0}^{B}\right)$

- $V T C^{0}$ proves

$$
\begin{aligned}
\operatorname{imul}\left[x^{3}\right] & \rightarrow \operatorname{IMUL}[x] \\
\operatorname{IMUL}\left[x^{2}|z|\right] & \rightarrow C y c[z, x] \\
C y c[z, x] & \rightarrow \operatorname{imul}\left[\min \left\{z, x^{c}|z|^{c}\right\}\right]
\end{aligned}
$$

(new idea: structure theorem for finite abelian groups)

$$
\therefore(x+1)^{6}|z|^{3} \leq z \wedge C y c[z, x] \rightarrow C y c[z, x+1]
$$

- finish the proof by induction on x

Summary

- VTC ${ }^{0}$ proves IMUL
- $V T C^{0}$ proves RSUV-translation of Σ_{0}^{b}-MIN
- $C_{2}^{0} \equiv C_{2}^{0}[d i v]$, proves $\Sigma_{0}^{b}-M I N$
- $I \Delta_{0}+\operatorname{WPHP}\left(\Delta_{0}\right)$ has a well-behaved Δ_{0} definition of $a^{r} \bmod m$

References

- A. Atserias: Improved bounds on the Weak Pigeonhole Principle and infinitely many primes from weaker axioms, Theoret. Comput. Sci. 295 (2003), 27-39
- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994-1003
- A. Chiu, G. Davida, B. Litow: Division in logspace-uniform NC ${ }^{1}$, RAIRO - Theoret. Inf. Appl. 35 (2001), 259-275
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695-716
- E. Jeřábek: Open induction in a bounded arithmetic for TC 0, Arch. Math. Logic 54 (2015), 359-394

References (cont'd)

- E. Jeřábek: Iterated multiplication in VTC ${ }^{0}$, arXiv:2011.03095
- J. Johannsen, C. Pollett: On proofs about threshold circuits and counting hierarchies (extended abstract), LICS, 1998, 444-452
- J. Johannsen: Weak bounded arithmetic, the Diffie-Hellman problem, and Constable's class K, LICS, 1999, 268-274
- J. Johannsen, C. Pollett: On the Δ_{1}^{b}-bit-comprehension rule, Logic Colloquium '98 (Proceedings), ASL, 2000, 262-280
- S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127-156
- S. Müller: Polylogarithmic cuts in models of \mathbf{V}^{0}, Logical Methods in Comp. Sci. 9 (2013), no. 1
- D. Zambella: End extensions of models of linearly bounded arithmetic, Ann. Pure Appl. Logic 88 (1997), 263-277

