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The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)
The existential theory of the structure (Z;1,+,—, <,|) is decidable.
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The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)
The existential theory of the structure (Z;1,+,—, <,|) is decidable.

Divisibility and GCD

We have dDef(Z; 1, +, —, <, |) = ADef(Z; 1, +, —, <, GCD)

x|y & GCD(x,y) =xV GCD(x,y) = —
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The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)
The existential theory of the structure (Z;1,+,—, <,|) is decidable.

Divisibility and GCD

We have dDef(Z; 1, +, —, <, |) = ADef(Z; 1, +, —, <, GCD)

x|y < GCD(x,y) = xV GCD(x,y) = —
GCD(x,y)=z < 0<zAz|xAz|yAJu(x|uAy|u+2z)
-GCD(x,y) =z © z+1<0V-z|xV-z|yVIv(v|xAv|yAz+1<v)

@ L, FOL of a signature o. (M; o) structure of a signature o and domain M.

@ L, Existential Ly-formulas: Jy¢(x,y) for QFLs-formula ¢(x, y).
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The Diophantine Problem for Addition and Divisibility

Theorem (A.P. Bel'tyukov 1976, L. Lipshitz 1978)
The existential theory of the structure (Z;1,+,—, <,|) is decidable.

Divisibility and GCD

We have dDef(Z; 1, +, —, <, |) = ADef(Z; 1, +, —, <, GCD)

x|y < GCD(x,y) = xV GCD(x,y) = —
GCD(x,y)=z < 0<zAz|xAz|yAJu(x|uAy|u+2z)
-GCD(x,y) =z © z+1<0V-z|xV-z|yVIv(v|xAv|yAz+1<v)

L, FOL of a signature o. (M, o) structure of a signature o and domain M.
JL, Existential Lo-formulas: Jy(x,y) for QFLs-formula o(x,y).
Def(M; o) the set of all L,-definable in M.

IDef(M; o) and QFDef(M; o) for 3L,- and quantifier-free definable relations,
respectively.
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Positive existential definability with divisibility

e QF-formula ¢(x) is positive (PQF-formula) if it is constructed from
atomic formulas with only logical connectives A and V.

e J-formula Jyp(x,y) is positive if ¢(x,y) is PQF-formula.
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Positive existential definability with divisibility

e QF-formula ¢(x) is positive (PQF-formula) if it is constructed from
atomic formulas with only logical connectives A and V.

e J-formula Jyp(x,y) is positive if ¢(x,y) is PQF-formula.
e PdDef(M; o) the set of all P3-defibable in (M; o).
o PQFDef(M; o) positively QF-definable in (M; o).

Example

We have 3Def(Z; 1,4+, —, <,|) = P3Def(Z; 1, +, —, <,|)

X)(y(i}X:O/\(lSy\/yg—1)\/32(1Sz/\(zgx—l\/zg—x—l)/\x|y—|—z>.
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e QF-formula ¢(x) is positive (PQF-formula) if it is constructed from
atomic formulas with only logical connectives A and V.
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Corollary
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Positive existential definability with divisibility

e QF-formula ¢(x) is positive (PQF-formula) if it is constructed from
atomic formulas with only logical connectives A and V.

e J-formula Jyp(x,y) is positive if ¢(x,y) is PQF-formula.
e PdDef(M; o) the set of all P3-defibable in (M; o).
o PQFDef(M; o) positively QF-definable in (M; o).

Example

We have 3Def(Z; 1,4+, —, <,|) = P3Def(Z; 1, +, —, <,|)

X)(y(i}X:O/\(lSy\/yg—1)\/32(1Sz/\(zgx—l\/zg—x—l)/\x|y—|—z>.

Corollary
Def(Z; 1,4+, —, <,|) # ADef(Z; 1,4+, —, <,|), since the elementary theory is undecidable. J

By Presburger’s quantifier-elimination algorithm:
P3Def(Z; 1,4+, —, <) = PQFDef(Z; 1,+,—,<,2[,3 |,4| ...) = Def(Z; 1, +, —, <).
How can we describe PIDef(Z; 1, +, —, <, |)?
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Intermediate structures

@ Coprimeness relation: x L y = GCD(x,y) = 1.
@ PIDef(Z; 1,4, —, <) C PADef(Z; 1, +, —, <, L) CP3IDef(Z; 1,4+, —, <, |).
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Intermediate structures

@ Coprimeness relation: x L y = GCD(x,y) = 1.
@ PIDef(Z; 1,4, —, <) C PADef(Z; 1, +, —, <, L) CP3IDef(Z; 1,4+, —, <, |).

@ Set of non-squares is 3-definable in (Z;1,+,—,<,[}? [L. van den Dries and
A. Wilkie 2003]

@ Order < is 3-definable in (Z; 1,4+, —,|)? [M. Bozga and R. losif 2005]

— *

@ Dis-coprimeness [ is P3-definable in (Z; 1,4+, —, <, 1) orin (Z; 1,4, —, 1)?

Theorem (D. Richard 1989)

The elementary theory of the structure (Z;1,+, L) is undecidable.

Quantifier elimination to describe P3-definable sets in (Z; 1,4+, L1):
@ Extend the signature (1,+, L) ~» o with some P3-definable predicates.

@ For every Ixp(x,y), where ¢(x,y) is PQFL,-formula, construct an equivalent in
Z PQFLs-formula 9(y).
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P3-definability in (Z; 1,4+, 1)

Positive Existential Definitions

@ x=0&x+11Lx+1A3Lx+2

@ y=—xex+y=0andx=y & Jt(t=—-yAx+t=0)
@ GCD(x,y)=d < Judv(x=duANy=dvAulv)
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P3-definability in (Z; 1,4+, 1)

Positive Existential Definitions

@ x=0&x+11Lx+1A3Lx+2

@ y=—xex+y=0andx=y & Jt(t=—-yAx+t=0)
@ GCD(x,y)=d < Judv(x=duANy=dvAulv)
@ x#A0& Jt(x LtAxLt+4)andx#y < It(t=—-yAx+t#0)

t = 1(mod 2) A t = 1(mod 3) A /\ t = 2(mod p)

pPEP\{2,3}

where P; is the set of prime divisors of x.
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P3-definability in (Z; 1,4+, 1)

Positive Existential Definitions

@ x=0&x+11Lx+1A3Lx+2

y=—x&x+y=0andx=y < 3Jt(t=—-yAx+t=0)
GCD(x,y)=d < Juiav(x=duAy =dvAu_lv)
x#0&< Jt(x LtAxLt+4)and x#y < Ft(t=—-yAx+t#0)

t = 1(mod 2) A t = 1(mod 3) A /\ t = 2(mod p)

pPEP\{2,3}

where P; is the set of prime divisors of x.

@ x =y is PQF-definable in (Z;1,+, —, L) and x # y is PQF-definable in
<Z; 17 +7 ) 7£ 07 J—)
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P3-definability in (Z; 1,4+, 1)

Positive Existential Definitions

@ x=0&x+11Lx+1A3Lx+2

@ y=—xex+y=0andx=y & Jt(t=—-yAx+t=0)
@ GCD(x,y)=d < Judv(x=duANy=dvAulv)
@ x#A0& Jt(x LtAxLt+4)andx#y < It(t=—-yAx+t#0)

t = 1(mod 2) A t = 1(mod 3) A /\ t = 2(mod p),

pPEP\{2,3}

where P; is the set of prime divisors of x.

@ x =y is PQF-definable in (Z;1,+, —, L) and x # y is PQF-definable in
<Z; 17 +7 ) 7£ 07 J—)
Proposition (PQF-undefinability of dis-equality)
The relation x # 0 is not PQF-definable in the structure (Z;1,+,—, 1).
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Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.
@ Euclidean algorithm: (f(y) + ax, g(y) + bx) ~ (f(y), g(y) + cx) such that
GCD(f(y) + ax, g(y) + bx) = GCD(f(y), &(y) + cx).
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Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.
@ Euclidean algorithm: (f(y) + ax, g(y) + bx) ~ (f(y), g(y) + cx) such that
GCD(f(y) + ax, g(y) + bx) = GCD(f(y), &(y) + cx).

@ Suppose p(x) = V (/\ ai L b+ c,-x) defines x # 0.

jes \iel;

@ —p(0) is /\(\/a,lb)wtakesuchijeljthataij,}ib‘}..
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@ 1. All a; =0 ~ large x .
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Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.
@ Euclidean algorithm: (f(y) + ax,g(y) + bx) ~ (f(y),&(y) + cx) such that
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Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.

@ Euclidean algorithm: (f(y) + ax,g(y) + bx) ~ (f(y),&(y) + cx) such that
GCD(f(y) + ax, g(y) + bx) = GCD(f(y), &(y) + cx).

@ Suppose p(x) = V (/\ ai L b+ c,-x) defines x # 0.

jes \iel;

je€J \i€l;

@ —p(0) is /\(\/a,,[b)wtakesuchijeljthataij,lib;j.

@ 1. All 3; =0 ~ large x . 2. Otherwise for A= ] a; >0 we have =p(A).
—_— JEINa;,#0

Proposition
Fix d > 2. The relation GCD(x, y) = d is not PQF-definable in (Z; 1,4, —, #, L).
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Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.
@ Euclidean algorithm: (f(y) + ax,g(y) + bx) ~ (f(y),&(y) + cx) such that
GCD(f(y) + ax, g(y) + bx) = GCD(f(y), &(y) + cx).

@ Suppose p(x) = V (/\ ai L b+ c,-x) defines x # 0.

jes \iel;

@ —p(0) is /\(\/a,,[b)wtakesuchijeljthataij,lib;j.

je€J \i€l;
@ 1. All 3; =0 ~ large x . 2. Otherwise for A= ] a; >0 we have =p(A).
E— j€INa#0
Proposition
Fix d > 2. The relation GCD(x, y) = d is not PQF-definable in (Z; 1,4, —, #, L).

Theorem
PIDef(Z; 1, +, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCDs, GCDs, ...).
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Extension of the signature. The first main result.

PQF-undefinability of dis-equality proof.
@ Euclidean algorithm: (f(y) + ax,g(y) + bx) ~ (f(y),&(y) + cx) such that
GCD(f(y) + ax, g(y) + bx) = GCD(f(y), &(y) + cx).

@ Suppose p(x) = V (/\ ai L b+ c,-x) defines x # 0.

jes \iel;
@ —p(0) is /\(\/a,lb)wtakesuchijeljthataij,lib;j.
je€J \i€l;

@ 1. All 3; =0 ~ large x . 2. Otherwise for A= ] a; >0 we have =p(A).
—_— JEINa;,#0

Proposition
Fix d > 2. The relation GCD(x, y) = d is not PQF-definable in (Z; 1,4, —, #, L).

P3Def(Z;1,+, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCD3, GCDa, ...).

Fix the signature o = (1, 4+, —, #, 1, GCD2, GCD3, GCDs4, ...).

Quantifier elimination algorlthm

For every PQFL,-formula ¢(x,y) the algorithm assigns to Ix¢(x, y) an equivalent in Z
PQFL,-formula ¢ (y).
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GCD-Lemma

Ix /\ GCD(a;,b; +x) =d;. (1)
i€[1..m]

Lemma (GCD-Lemma)

For the system (1) with aj, bj, di € Z, a; # 0, di > 0 for every i € [1..m], we define for
every prime p the integer M, = _nflax ]vp(d,-) and the index sets

i€ll..m
Jo={ie[l.m] : vp(di) = Mp} and I, = {i € J, : vp(ai) > Mp}. Then (1) has a
solution in Z iff the following conditions simultaneously hold:

QO A dla
i€[l..m]

Q@ A GCD(di,dj) | bi—b;
i,jE[1..m]

9 /\ GCD(a,-, dj, b — bj) | d;
i,jE[1..m]

© For every prime p < m and every | C I, such that |I| = p there are such i,j € I,
i # j that Vp(b,' = bj) > M,.
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GCD-Lemma

Ix /\ GCD(a;,b; +x) =d;. (1)

i€[1..m]

GCD(6, x) = 2
GCD(6,x) =3

Lemma (GCD-Lemma)

For the system (1) with aj, bj, di € Z, a; # 0, di > 0 for every i € [1..m], we define for
every prime p the integer M, = _nflax ]vp(d,-) and the index sets

i€ll..m
Jo={ie[l.m] : vp(di) = Mp} and I, = {i € J, : vp(ai) > Mp}. Then (1) has a
solution in Z iff the following conditions simultaneously hold:

QO A dla
i€[l..m]

Q@ A GCD(di,dj) | bi—b;
i,jE[1..m]

9 /\ GCD(a,-, dj, b — bj) | d;
i,jE[1..m]

© For every prime p < m and every | C I, such that |I| = p there are such i,j € I,
i # j that Vp(b,' = bj) > M,.

— = = = Ty
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GCD-Lemma

Ix /\ GCD(a;,b; +x) =d;. (1)

i€[1..m]

GCD(6,x) =2 GCD(6,x) =1
GCD(6,x) =3 GCD(2,1+x) =1

Lemma (GCD-Lemma)
For the system (1) with aj, bj, di € Z, a; # 0, di > 0 for every i € [1..m], we define for
every prime p the integer M, = _nflax ]vp(d,-) and the index sets

i€ll..m
Jo={ie[l.m] : vp(di) = Mp} and I, = {i € J, : vp(ai) > Mp}. Then (1) has a
solution in Z iff the following conditions simultaneously hold:

QO A dla
i€[l..m]

Q@ A GCD(di,dj) | bi—b;
i,jE[1..m]

9 /\ GCD(a,-, dj, b — bj) | d;
i,jE[1..m]

© For every prime p < m and every | C I, such that |I| = p there are such i,j € I,
i # j that Vp(b,' = bj) > M,.

— = = = Ty
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Quantifier elimination algorithm (sketch)

3X< A GCD(fi(y), gily) +cx)=din A f;(y)#c;X>

i€[l..m] i€[m+1..1]
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3X< A GCD(fi(y), gi(y) +cix)=din A f;(y)#c;X>

i€[l..m] i€[m+1..1]

€= M)~
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Quantifier elimination algorithm (sketch)

3X< A GCD(fi(y), gi(y) +cix)=din A f;(y)#c;X>

i€[l..m] i€[m+1..1]

C= Lgh/}(c,) ~» multiply by g ~
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Quantifier elimination algorithm (sketch)

3X< A GCD(fi(y), gi(y) +cix)=din A f;(y)#c;X>

i€[l..m] i€[m+1..1]
C= Lgh/}(c,) ~> multiply by g ~> replace Cx by X and adjoin GCD(C,x) = C
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Quantifier elimination algorithm (sketch)

| N\ GCD(fy).&iy) +x)=din N\ fily) #x

i€[l..m] i€[m+1..1]

(x.y)
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Quantifier elimination algorithm (sketch)

| N\ GCD(fy).&iy) +x)=din N\ fily) #x

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f;(y) = 0.
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Quantifier elimination algorithm (sketch)

| N\ GCD(fy).&iy) +x)=din N\ fily) #x

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f(y) = 0.

NV (ﬁ-(y)O/\ V <p(s-d,-g;(y),y)>-

i€[l..m] se{—1,1}
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Quantifier elimination algorithm (sketch)

| N\ GCD(fy).&iy) +x)=din N\ fily) #x

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f(y) = 0.

NV (ﬁ-(y)O/\ V <p(s-d,-g;(y),y)>-

i€[l..m] se{—1,1}

Case 2. For all i € [1..m] we have fi(y) # 0.
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Quantifier elimination algorithm (sketch)

ax( /\ GCO(fi(y).&i(y) +x)=din )\ f,-(y)#x)

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f(y) = 0.
Y (ﬁ-(y) =0n V. p(s-di— g,-(y),y)>-
i€[l..m] se{—1,1}

Case 2. For all i € [1..m] we have fi(y) # 0.
~ apply GCD-Lemma: A fi(y) # 0 A vgep(y).

i€[l..m]
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Quantifier elimination algorithm (sketch)

| N\ GCD(fy).&iy) +x)=din N\ fily) #x

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f(y) = 0.
Y (ﬁ-(y) =0n V. p(s-di— g,-(y),y)>-
i€[l..m] se{—1,1}

Case 2. For all i € [1..m] we have fi(y) # 0.
~ apply GCD-Lemma: A fi(y) # 0 A vgep(y).

i€[l..m]

Formula ¥¢cp(y) is a conjunction of conditions 1 — 4 of GCD-Lemma.
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Quantifier elimination algorithm (sketch)

ax( /\ GCO(fi(y).&i(y) +x)=din )\ f,-(y)#x)

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f(y) = 0.

NV (ﬁ-(y)O/\ V <p(s-d,-g;(y),y)>-

i€[l..m] se{—1,1}

Case 2. For all i € [1..m] we have fi(y) # 0.

~ apply GCD-Lemma: A fi(y) # 0 A vgep(y).
i€[l..m]

Formula ¥¢cp(y) is a conjunction of conditions 1 — 4 of GCD-Lemma.
Consider condition 3:

For every i, € [1..m] we have GCD (GCD (fi(y), d;), gi(y) — gi(y)) | di
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Quantifier elimination algorithm (sketch)

ax( /\ GCO(fi(y).&i(y) +x)=din )\ f,-(y)#x)

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f(y) = 0.

NV (ﬁ-(y)O/\ V <p(s-d,-g;(y),y)>-

i€[l..m] se{—1,1}

Case 2. For all i € [1..m] we have fi(y) # 0.

~ apply GCD-Lemma: A fi(y) # 0 A vgep(y).
i€[l..m]

Formula ¥¢cp(y) is a conjunction of conditions 1 — 4 of GCD-Lemma.
Consider condition 3:

For every i, € [1..m] we have GCD (GCD (fi(y), d;), gi(y) — gi(y)) | di

~ \/ (GCD(f(y). ) = 2
ald;
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Quantifier elimination algorithm (sketch)

ax( /\ GCO(fi(y).&i(y) +x)=din )\ f,-(y)#x)

i€[l..m] i€[m+1..1]

e(x.y)
Case 1. For some i € [1..m] we have f(y) = 0.

NV (ﬁ-(y)O/\ V <p(s-d,-g;(y),y)>-

i€[l..m] se{—1,1}

Case 2. For all i € [1..m] we have fi(y) # 0.

~ apply GCD-Lemma: A fi(y) # 0 A vgep(y).
i€[l..m]

Formula ¥¢cp(y) is a conjunction of conditions 1 — 4 of GCD-Lemma.
Consider condition 3:

For every i, € [1..m] we have GCD (GCD (fi(y), d;), gi(y) — gi(y)) | di

~ \/ (GCD(f(y), d) = a1 \/ GCD(a, &i(y) ~ g(¥)) = d).
ald; d|d;
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Corollaries

P3Def(Z; 1, +, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCD3, GCD4, ...).
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Corollaries

P3Def(Z; 1, +, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCD3, GCD4, ...).

Corollary 1. Dis-coprimeness [ is not P3-definable in (Z; 1,4+, —, L).
Proof

@ Assume /[ is P3-definable.

o GCD(x,y)=d<dtxVdtyVIudv(x=duAy=dvAulv).
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Corollary 1. Dis-coprimeness [ is not P3-definable in (Z; 1,4+, —, L).
Proof

@ Assume /[ is P3-definable.

o GCD(x,y)=d<dtxVdtyVIudv(x=duAy=dvAulv).

edifxs \/ d|x+ k-~ similar to PA case, we can eliminate all
k=1.d—1
the quantifiers
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Corollaries

P3Def(Z; 1, +, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCD3, GCD4, ...).

Corollary 1. Dis-coprimeness [ is not P3-definable in (Z; 1,4+, —, L).
Proof
@ Assume /[ is P3-definable.
o GCD(x,y)=d<dtxVdtyVIudv(x=duAy=dvAulv).
edifxs \/ d|x+ k-~ similar to PA case, we can eliminate all
the quanl’zifilé}i alnd Th(Z;1,+, L) is decidable.
Corollary 2. The order relation < is not P3-definable in (Z; 1,4, —, 1).
(consider x > 0).
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Corollaries

P3Def(Z; 1, +, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCD3, GCD4, ...).

Corollary 1. Dis-coprimeness [ is not P3-definable in (Z; 1,4+, —, L).
Proof
@ Assume /[ is P3-definable.
o GCD(x,y)=d<dtxVdtyVIudv(x=duAy=dvAulv).
edifxs \/ d|x+ k-~ similar to PA case, we can eliminate all
the quanl’zifilé}i alnd Th(Z;1,+, L) is decidable.
Corollary 2. The order relation < is not P3-definable in (Z; 1,4, —, 1).
(consider x > 0).
Consider (N; S, L), where S is the successor function x — x + 1.

e Th(N;S, 1) is undecidable. [A.R. Woods 1981, D. Richard 1982]
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Corollaries

P3Def(Z; 1, +, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCD3, GCD4, ...).

Corollary 1. Dis-coprimeness [ is not P3-definable in (Z; 1,4+, —, L).
Proof
@ Assume /[ is P3-definable.
o GCD(x,y)=d<dtxVdtyVIudv(x=duAy=dvAulv).
edifxs \/ d|x+ k-~ similar to PA case, we can eliminate all
the quanl’zifiléé alnd Th(Z;1,+, L) is decidable.
Corollary 2. The order relation < is not P3-definable in (Z; 1,4, —, 1).
(consider x > 0).
Consider (N; S, L), where S is the successor function x — x + 1.
e Th(N;S, 1) is undecidable. [A.R. Woods 1981, D. Richard 1982]

e x # 0 < Jy(x L SSy) is not P3-definable in (N; S, 1).
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Corollaries

P3Def(Z; 1, +, L) = PQFDef(Z; 1, +, —, #, L, GCD,, GCD3, GCD4, ...).

Corollary 1. Dis-coprimeness [ is not P3-definable in (Z; 1,4+, —, L).
Proof

@ Assume /[ is P3-definable.

o GCD(x,y)=d<dtxVdtyVIudv(x=duAy=dvAulv).

edifxs \/ d|x+ k-~ similar to PA case, we can eliminate all
k=1.d—1
the quantifiers and Th(Z; 1,4, L) is decidable.

Corollary 2. The order relation < is not P3-definable in (Z; 1,4, —, 1).
(consider x > 0).
Consider (N; S, L), where S is the successor function x — x + 1.
e Th(N;S, 1) is undecidable. [A.R. Woods 1981, D. Richard 1982]
e x # 0 < Jy(x L SSy) is not P3-definable in (N; S, 1).
Theorem PaDef(N; S, L) = PQFDef(N; S, # 0, L).
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
y=xX>Sx|yAx+1|x+yAVz(x|zAx+1|x+z=x+y|x+2)

Decidable Fragments

Here ¢;(x) will be some QFLpap-formulas
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
y=xX>Sx|yAx+1|x+yAVz(x|zAx+1|x+z=x+y|x+2)

Decidable Fragments

Here ¢;(x) will be some QFLpap-formulas

@ By G.A. Pérez and R. Raha (2020).

vx3y VA (600 1 g(x,y) A fi(x) 2 0)) Agilx) Ax > 0Ay >0,
icljed;

M
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
y=xX>Sx|yAx+1|x+yAVz(x|zAx+1|x+z=x+y|x+2)

Decidable Fragments

Here ¢;(x) will be some QFLpap-formulas

@ By G.A. Pérez and R. Raha (2020).

vXay\//\(f ) | gi(x,y) A fi(x )>0))w,( YAx>0Ay > 0.
ieljed;

@ Our result.

vx3y\/ A\ (6CD(5(x,y), g1(x,¥)) = d)) A ().

i€ljed;
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
y=xX>Sx|yAx+1|x+yAVz(x|zAx+1|x+z=x+y|x+2)

Decidable Fragments

Here ¢;(x) will be some QFLpap-formulas

@ By G.A. Pérez and R. Raha (2020). Divisibility.

vx3y \/ A (GCD((x), &(x,¥)) = f(x) A fi(x) 2 0) A@i(x) Ax = 0 Ay > 0.

ieljed;

@ Our result. Coprimeness.

vx3y \/ A (GCD(fi(x, ). g(x, ¥)) = &) A pi(x).

ieljed;
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
y=xX>Sx|yAx+1|x+yAVz(x|zAx+1|x+z=x+y|x+2)

Decidable Fragments

Here ¢;(x) will be some QFLpap-formulas

@ By G.A. Pérez and R. Raha (2020). Divisibility.

vx3y \/ A (GCD((x), &(x,¥)) = f(x) A fi(x) 2 0) A@i(x) Ax = 0 Ay > 0.

ieljed;

@ Our result. Coprimeness.

vx3y \/ A (GCD(fi(x, ). g(x, ¥)) = &) A pi(x).

ieljed;

Proof sketch: isolate y; € y
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
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Here ¢;(x) will be some QFLpap-formulas

@ By G.A. Pérez and R. Raha (2020). Divisibility.

vx3y \/ A (GCD((x), &(x,¥)) = f(x) A fi(x) 2 0) A@i(x) Ax = 0 Ay > 0.

ieljed;

@ Our result. Coprimeness.

vx3y \/ A (GCD(fi(x, ). g(x, ¥)) = &) A pi(x).

ieljed;

Proof sketch: isolate y; € y~ eliminate Jy;
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y=xX>Sx|yAx+1|x+yAVz(x|zAx+1|x+z=x+y|x+2)
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Here ¢;(x) will be some QFLpap-formulas

@ By G.A. Pérez and R. Raha (2020). Divisibility.

vx3y \/ A (GCD((x), &(x,¥)) = f(x) A fi(x) 2 0) A@i(x) Ax = 0 Ay > 0.

ieljed;

@ Our result. Coprimeness.
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Decidable V3-fragment of Lpap-Theory of Z

We know: V3-Theory of the structure (Z;1,+,—, <,|) is undecidable.

(DPRM-theorem + universal formula:
y=x2 e x|yAx+1|x+yAVz(x|zAx+1|x+z=>x+y]|x+2))

Decidable Fragments

Here ¢;(x) will be some QFLpap-formulas

@ By G.A. Pérez and R. Raha (2020). Divisibility.

VXEly\//\(GCD gj(xy))zﬁ-(x)/\ﬁ-(x)EO)AMAXEO/\yEO.

ieljed;

@ Our result. Coprimeness.

vx3y \/ A (GCD(fi(x, ). g(x, ¥)) = &) A pi(x).

ieljed;

Proof sketch: isolate y; € yw eliminate Jy;~~ rewrite GCD using universal quantifiers
~+ V-Theory of (Z;1,+,—, <,|) is decidable since 3-Theory is decidable.
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Positive existential arithmetic with addition and coprimeness

Decidability of PATh(Z; 1,4+, —, <, |) by [Bel'tyukov 1976, Lipshitz 1978]:

PQF Lpap-formula ¢(x)

Mikhail R. Starchak (SPbU) quasi-QE for Addition and GCD October 25, 2021 11/16



Positive existential arithmetic with addition and coprimeness

Decidability of PATh(Z; 1,4+, —, <, |) by [Bel'tyukov 1976, Lipshitz 1978]:

PQF Lpap-formula ¢(x)

~+ equi-satisfiable PQFLpap-formula \/ ¢;(y;) A yj > 0 without < in ¢;(y;).
j€d
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Positive existential arithmetic with addition and coprimeness

Decidability of PATh(Z; 1,4+, —, <, |) by [Bel'tyukov 1976, Lipshitz 1978]:

PQF Lpap-formula ¢(x)
~+ equi-satisfiable PQFLpap-formula \/ ¢;(y;) A yj > 0 without < in ¢;(y;).
JjeJ
~» for such ¢;(yj) we can construct a constant v; such that 3y;jp;(y;) in N iff

Jy;jpj(y;) in the p-adic integers for every prime p < v; [Weispfenning 1988].
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Positive existential arithmetic with addition and coprimeness

Decidability of PATh(Z; 1,4+, —, <, |) by [Bel'tyukov 1976, Lipshitz 1978]:

PQF Lpap-formula ¢(x)
~+ equi-satisfiable PQFLpap-formula \/ ;(y;) A yj > 0 without < in ¢;(y;).
Jjed
~» for such ¢;(y;) we can construct a constant ; such that Jy;¢;(y;) in N iff
Jy;jpj(y;) in the p-adic integers for every prime p < v; [Weispfenning 1988].

Constructing ;(y;) is rather sophisticated ~» more quantifier-elimination spirit
Decidability of PITh(Z; 1, +, —, <, 1).
Step 1. Variable isolation: PQFLpac-formula ¢(x)
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PQF Lpap-formula ¢(x)
~+ equi-satisfiable PQFLpap-formula \/ ;(y;) A yj > 0 without < in ¢;(y;).
Jjed
~» for such ¢;(y;) we can construct a constant ; such that Jy;¢;(y;) in N iff
Jy;jpj(y;) in the p-adic integers for every prime p < v; [Weispfenning 1988].

Constructing ;(y;) is rather sophisticated ~» more quantifier-elimination spirit
Decidability of PITh(Z; 1, +, —, <, 1).
Step 1. Variable isolation: PQFLpac-formula ¢(x)~~ equi-satisfiable \/ ¢;(y;), where
jed
@ Every list y; has at most the same size as x.
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Decidability of PATh(Z; 1,4+, —, <, |) by [Bel'tyukov 1976, Lipshitz 1978]:

PQF Lpap-formula ¢(x)
~+ equi-satisfiable PQFLpap-formula \/ ;(y;) A yj > 0 without < in ¢;(y;).
Jjed
~» for such ¢;(y;) we can construct a constant ; such that Jy;¢;(y;) in N iff
Jy;jpj(y;) in the p-adic integers for every prime p < v; [Weispfenning 1988].

Constructing ;(y;) is rather sophisticated ~» more quantifier-elimination spirit
Decidability of PITh(Z; 1, +, —, <, 1).
Step 1. Variable isolation: PQFLpac-formula ¢(x)~~ equi-satisfiable \/ ¢;(y;), where
jed
@ Every list y; has at most the same size as x.
® ¢i(yj) hasform z; > 0Nt 2 0AQG(Z) A A GCD(7(2), &.i(2) + cijt) = dij,
i€[1..mj]
where f; j(z;) has non-negative coefficients and positive constant terms.
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Positive existential arithmetic with addition and coprimeness

Decidability of PATh(Z; 1,4+, —, <, |) by [Bel'tyukov 1976, Lipshitz 1978]:

PQF Lpap-formula ¢(x)
~+ equi-satisfiable PQFLpap-formula \/ ;(y;) A yj > 0 without < in ¢;(y;).
Jjed
~» for such ¢;(y;) we can construct a constant ; such that Jy;¢;(y;) in N iff
Jy;jpj(y;) in the p-adic integers for every prime p < v; [Weispfenning 1988].

Constructing ;(y;) is rather sophisticated ~» more quantifier-elimination spirit
Decidability of PITh(Z; 1, +, —, <, 1).
Step 1. Variable isolation: PQFLpac-formula ¢(x)~~ equi-satisfiable \/ ¢;(y;), where
jed
@ Every list y; has at most the same size as x.
® ¢i(yj) hasform z; > 0Nt 2 0AQG(Z) A A GCD(7(2), &.i(2) + cijt) = dij,
i€[1..mj]
where f; j(z;) has non-negative coefficients and positive constant terms.

Step 2. Quantifier elimination: Apply GCD-Lemma to eliminate each ;.
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Generalize this approach to prove the BL-Theorem?

Difficulties:
@ Every variable t € y can appear in right-hand side polynomials

GCD(f(z),g(z) + ct) = h(z) + dt

with ¢,d > 0. ~ Lipshitz's basic transformations (Lemma 2).
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@ Application of GCD-Lemma to systems of the form

/\ GCD(fi(2), gi(z) + t) = hi(z)

i€[1..m]

requires introducing new variables.
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Generalize this approach to prove the BL-Theorem?

Difficulties:

@ Every variable t € y can appear in right-hand side polynomials

GCD(f(z),g(z) + ct) = h(z) + dt
with ¢,d > 0. ~» Lipshitz's basic transformations (Lemma 2).
@ Application of GCD-Lemma to systems of the form

/\ GCD(fi(2), gi(z) + t) = hi(z)
i€[1..m]

requires introducing new variables.

Consider (2): GCD(hi(z), hj(z)) | gi(z) — gj(2)
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Generalize this approach to prove the BL-Theorem?

Difficulties:

@ Every variable t € y can appear in right-hand side polynomials

GCD(f(z),g(z) + ct) = h(z) + dt
with ¢,d > 0. ~» Lipshitz's basic transformations (Lemma 2).
@ Application of GCD-Lemma to systems of the form

/\ GCD(fi(2), gi(z) + t) = hi(z)
i€[1..m]

requires introducing new variables.

Consider (2): GCD(hi(z), hj(z)) | gi(z) — gj(2)
for each (i,j), 1 <i < j < m, we introduce (;, such that

~ 3¢ j (GCD(hi(z), hj(z)) = Cij N GCD(¢ij, 8i(2) — gi(2)) = Cij) -
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Generalize this approach to prove the BL-Theorem?

Difficulties:

@ Every variable t € y can appear in right-hand side polynomials

GCD(f(z),g(z) + ct) = h(z) + dt
with ¢,d > 0. ~» Lipshitz's basic transformations (Lemma 2).
@ Application of GCD-Lemma to systems of the form

/\ GCD(fi(2), gi(z) + t) = hi(z)
i€[1..m]

requires introducing new variables.

Consider (2): GCD(hi(z), hj(z)) | gi(z) — gj(2)

for each (i,j), 1 <i < j < m, we introduce (;, such that

~ 3G (GCD(hi(2), hi(z)) = i ; A GCD(Ci, 8i(2) — g(2)) = Cij) -
Aim: eliminate all Latin variables ~~
each linear polynomial is either a¢ or a for some a > 0.
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
@ Structure (M; o) and language L, with variables from S; U S,.

@ Language L4 C L,; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.
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@ Language L4 C L,; all occurrences of Latin variables are free and all
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
@ Structure (M; o) and language L, with variables from S; U S,.

@ Language L4 C L,; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.

Quasi-QE algorithm A for the language L 4 in the structure (M; o):
(1) La-formulas of elimination form: L% C L 4.
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
@ Structure (M; o) and language L, with variables from S; U S,.

@ Language L4 C L,; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.

Quasi-QE algorithm A for the language L 4 in the structure (M; o):

(1) La-formulas of elimination form: L% C L 4.

(2) Step 1: L 4-formula ap(y, o) ~~ equi-satisfiable \/ Jap;(yj, &) and for every
jed

jed:
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
@ Structure (M; o) and language L, with variables from S; U S,.

@ Language L4 C L,; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.

Quasi-QE algorithm A for the language L 4 in the structure (M; o):
(1) La-formulas of elimination form: L% C L 4.

(2) Step 1: L 4-formula ap(y, o) ~~ equi-satisfiable \/ Jap;(yj, &) and for every
jed
jed:

© y; comprises at most the same number of variables as y.
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
@ Structure (M; o) and language L, with variables from S; U S,.

@ Language L4 C L,; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.

Quasi-QE algorithm A for the language L 4 in the structure (M; o):
(1) La-formulas of elimination form: L% C L 4.

(2) Step 1: L 4-formula ap(y, o) ~~ equi-satisfiable \/ Jap;(yj, &) and for every
j€d
jed:
© y; comprises at most the same number of variables as y.

@ There is a variable X; € y; such that [3a@;(y;, @)]9 € L%.
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
@ Structure (M; o) and language L, with variables from S; U S,.

@ Language L4 C L,; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.

Quasi-QE algorithm A for the language L 4 in the structure (M; o):

g guag
(1) La-formulas of elimination form: L% C L 4.

L 7 C o
(2) Step 1: L 4-formula ap(y, o) ~~ equi-satisfiable \/ Jap;(yj, &) and for every
j€d

jed:

© y; comprises at most the same number of variables as y.

@ There is a variable X; € y; such that [3a@;(y;, @)]9 € L%.

(3) Step 2: IxJap(x, z, ) ~ equivalent L 4-formula EIaH,BzZ(z,a,,B). Here
Jap(x, z, ) is some Lj-formula.
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Quasi-quantifier elimination algorithms

@ Two disjoint sorts of variables: S; (Latin letters) and S, (Greek letters).
@ Structure (M; o) and language L, with variables from S; U S,.

@ Language L4 C L,; all occurrences of Latin variables are free and all
occurrences of Greek variables are bound.

Quasi-QE algorithm A for the language L 4 in the structure (M; o):
(1) La-formulas of elimination form: L% C L 4.

(2) Step 1: La-formula Jap(y, ) ~~ equi-satisfiable \/ 3apj(y;, ) and for every
jed: <

© y; comprises at most the same number of variables as y.

@ There is a variable X; € y; such that [3a@;(y;, @)]9 € L%.

(3) Step 2: IxJap(x, z, ) ~ equivalent L 4-formula EIaH,BzZ(z,a,,B). Here
Jap(x, z, ) is some Lj-formula.

A applies Step 1 and Step 2 to L 4-formulas: ¢(x) ~> ... ~ () such that

©(x) is satisfiable in (M; o) if and only if Iyi() is true in (M; o).
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Quasi-quantifier elimination for addition and GCD

@ L is the set of formulas Ja\/ ;(y;j, ) for some finite index set J and formulas
jed
»j(y, a) of the form

a>1Ay>0A [\ GCD(fi(y,a) giily, @) = hi(y, ),
ie[lumj]

where every gcd-expression takes one of the forms:

Q GCD(f(y),g(y)) = h(y)
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Quasi-quantifier elimination for addition and GCD

@ L is the set of formulas Ja\/ ;(y;j, ) for some finite index set J and formulas
jed
»j(y, a) of the form

a>1Ay>0A [\ GCD(fi(y,a) giily, @) = hi(y, ),
ie[lumj]

where every gcd-expression takes one of the forms:

Q GCD(f(y). g(y)) = h(y)
Q GCD(f(y), g(y)) = a¢
© GCD(aC, g(y)) = bn

@ GCD(a(, bn) = cb,
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Quasi-quantifier elimination for addition and GCD

@ L is the set of formulas Ja\/ ;(y;j, ) for some finite index set J and formulas
jed
»j(y, a) of the form

a>1Ay>0A [\ GCD(fi(y,a) giily, @) = hi(y, ),
ie[lumj]

where every gcd-expression takes one of the forms:

O GCD(f(y).&(y)) = h(y)
Q GCD(f(y), g(y)) = a¢
Q GCD(a¢, g(y)) = bn
@ GCD(a(, bn) = b,
@ % C Lz comprise formulas Ja \/ @j(x, zj, ) for some finite index set J» and
Jj€J)2
formulas ¢;j(x, z, &) of the form

a>1Az > 0Ax > 0AG(z,@)A [\ GCD(fij(z. @), &ij(2)+cijx) = hij(z. ),
i€[l..mj]
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Quasi-quantifier elimination for addition and GCD

@ L is the set of formulas Ja\/ ;(y;j, ) for some finite index set J and formulas
jed
j(y, ) of the form
a>1Ay>0A [\ GCD(fi(y,a) giily, @) = hi(y, ),
ie[lumj]

where every gcd-expression takes one of the forms:

O GCD(f(y).&(y)) = h(y)
Q GCD(f(y), g(y)) = a¢
Q GCD(a¢, g(y)) = bn
@ GCD(a(, bn) = b,
@ % C Lz comprise formulas Ja \/ @j(x, zj, ) for some finite index set J» and
Jj€J)2
formulas ¢;j(x, z, &) of the form

a>1Az>0Ax > 0/\551-(2,01)/\ /\ GCD(fi(z, @), &j(2)+cijx) = hij(z, @),

i€[1..mj]

@ GCD-Lemma at Step 2 of R to eliminate x and obtain an Lz-formula.
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Reduction to a fragment of Skolem Arithmetic with

constants

Every Lz-formula with only Greek variables is a P3L,-formula for
o =(1,{a}acz-,, GCD).
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Reduction to a fragment of Skolem Arithmetic with

constants

Every Lz-formula with only Greek variables is a P3L,-formula for
o =(1,{a}acz-,, GCD).

The decision problem for 3Th(Z; 1,4+, —, <,GCD) is reducible to the

decision problem for PEITh<Z>0; 1,{a}acz-0- GCD>, where a- is a unary
functional symbol for multiplication by a positive integer a.
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Reduction to a fragment of Skolem Arithmetic with

constants

Every Lz-formula with only Greek variables is a P3L,-formula for
o =(1,{a}acz-,, GCD).

The decision problem for 3Th(Z; 1,4+, —, <,GCD) is reducible to the

decision problem for PEITh<Z>0; 1,{a}acz-0- GCD>, where a- is a unary
functional symbol for multiplication by a positive integer a.

o Skolem Arithmetic with constants Th(Z-o; {a}acz.,. ", =) is
decidable [Barth D., Beck M., Dose T., GlaRer C., Michler L.,
Technau M. “Emptiness Problems for Integer Circuits” 2017].
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Reduction to a fragment of Skolem Arithmetic with

constants

Every Lz-formula with only Greek variables is a P3L,-formula for
o =(1,{a}acz-,, GCD).

The decision problem for 3Th(Z; 1,4+, —, <,GCD) is reducible to the

decision problem for PEITh<Z>0; 1,{a}acz-0- GCD>, where a- is a unary
functional symbol for multiplication by a positive integer a.

o Skolem Arithmetic with constants Th(Z-o; {a}acz.,. ", =) is
decidable [Barth D., Beck M., Dose T., GlaRer C., Michler L.,
Technau M. “Emptiness Problems for Integer Circuits” 2017].

@ The proof of the BL-Theorem now follows from
GCD(x,y) =z z|xANz|yAVt(t | xAt|y=t]|z),

where x | y = 3z(y = z - x).
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P3-Definability in (Z;1,+,<, L)
@ Dis-coprimeness /[ is P3-definable?
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P3-Definability in (Z;1,+,<, L)
@ Dis-coprimeness /[ is P3-definable?
@ More general decidable V3-fragment of (Z;1,+,—, <,|)?

Complexity of Ax=BACx>DA A\ GCD(fi(x),gi(x)) = d;
i€[1..m]
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@ More general decidable V3-fragment of (Z;1,+,—, <,|)?
Complexity of Ax=BACx>DA A\ GCD(fi(x),gi(x)) = d;
i€[1..m]
@ Polynomial upper bound on small solutions?
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P3-Definability in (Z;1,+,<, L)
@ Dis-coprimeness /[ is P3-definable?
@ More general decidable V3-fragment of (Z;1,+,—, <,|)?
Complexity of Ax=BACx>DA A\ GCD(fi(x),gi(x)) = d;
i€[1..m]
@ Polynomial upper bound on small solutions?

@ Satisfiability check in polynomial time when size of x is fixed?
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P3-Definability in (Z;1,+,<, L)
@ Dis-coprimeness /[ is P3-definable?
@ More general decidable V3-fragment of (Z;1,+,—, <,|)?
Complexity of Ax=BACx>DA A\ GCD(fi(x),gi(x)) = d;
i€[1..m]
@ Polynomial upper bound on small solutions?
@ Satisfiability check in polynomial time when size of x is fixed?

@ dlLpa-formulas : true and for ILpyp-formulas: false.
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P3-Definability in (Z;1,+,<, L)
@ Dis-coprimeness /[ is P3-definable?
@ More general decidable V3-fragment of (Z;1,+,—, <,|)?
Complexity of Ax=BACx>DA A\ GCD(fi(x),gi(x)) = d;
i€[1..m]
@ Polynomial upper bound on small solutions?
@ Satisfiability check in polynomial time when size of x is fixed?

@ dLpa-formulas : true and for ALpap-formulas: false.

Thanks for your attention !
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