End extensions of models of fragments of PA

C. Dimitracopoulos & V. Paschalis University of Athens

40ème Journées sur les Arithmétiques Faibles 27 October 2021

ヨッ イヨッ イヨッ

C. Dimitracopoulos and V. Paschalis. End extensions of models of weak arithmetic theories. *Notre Dame J. Formal Logic* 57 (2016), 181–193.

C. Dimitracopoulos and V. Paschalis. End extensions of models of fragments of PA. *Arch. Math. Logic* 59 (2020), 817–833.

C. Dimitracopoulos and V. Paschalis. End extensions of models of Δ_1 induction. *in preparation*.

伺 ト イヨト イヨト

C. Dimitracopoulos and V. Paschalis. End extensions of models of weak arithmetic theories. *Notre Dame J. Formal Logic* 57 (2016), 181–193.

C. Dimitracopoulos and V. Paschalis. End extensions of models of fragments of PA. *Arch. Math. Logic* 59 (2020), 817–833.

C. Dimitracopoulos and V. Paschalis. End extensions of models of Δ_1 induction. *in preparation*.

 $I\Sigma_n$: induction for Σ_n formulas (plus base theory)

 $B\Sigma_n$: $I\Delta_0$ + collection for Σ_n formulas

• (1) • (

C. Dimitracopoulos and V. Paschalis. End extensions of models of weak arithmetic theories. *Notre Dame J. Formal Logic* 57 (2016), 181–193.

C. Dimitracopoulos and V. Paschalis. End extensions of models of fragments of PA. *Arch. Math. Logic* 59 (2020), 817–833.

C. Dimitracopoulos and V. Paschalis. End extensions of models of Δ_1 induction. *in preparation*.

 $I\Sigma_n$: induction for Σ_n formulas (plus base theory)

 $B\Sigma_n$: $I\Delta_0$ + collection for Σ_n formulas

Theorem (MacDowell-Specker, 1961)

Every model of PA has a proper elementary end extension.

・ 回 ト ・ ヨ ト ・ ヨ ト

J. B. Paris and L. A. S. Kirby. Σ_n -collection schemas in arithmetic, in *Logic Colloquium* '77, 199–029, North-Holland, 1978.

<u>Theorem.</u> For any $n \ge 2$, if *M* is a countable model of $B\Sigma_n$, then *M* has a proper Σ_n -elementary end extension satisfying $I\Delta_0$.

伺下 イヨト イヨト

J. B. Paris and L. A. S. Kirby. Σ_n -collection schemas in arithmetic, in *Logic Colloquium* '77, 199–029, North-Holland, 1978.

<u>Theorem.</u> For any $n \ge 2$, if *M* is a countable model of $B\Sigma_n$, then *M* has a proper Σ_n -elementary end extension satisfying $I\Delta_0$.

P. Clote. A note on the MacDowell-Specker theorem. *Fund. Math.* 127 (1986), 163–170.

The Kirby-Paris construction used very strongly the countability of the model. In view of the cardinality-free statement of the MacDowell-Specker Theorem, we might expect the conclusion of Theorem 1 to hold for models of any cardinality. Such a possibility was first suggested by A. Wilkie.

<u>Theorem.</u> For any $n \ge 2$, if *M* is a model of $I\Sigma_n$, then *M* has a proper Σ_n -elementary end extension satisfying $I\Delta_0$.

<u>Remark.</u> Proofs of the Paris-Kirby and Clote results based on restricted ultrapower constructions

P. Clote and J. Krajiček. Open problems. *Oxford Logic Guides*, volume 23, *Arithmetic*, *proof theory and computational complexity* (Prague, 1991). Oxford University Press, New York, 1993.

Problem 1 (Fundamental problem F). Does every countable model of $B\Sigma_1$ have a proper end extension satisfying $I\Delta_0$?

・ 同 ト ・ ヨ ト ・ ヨ ト …

<u>Remark.</u> Proofs of the Paris-Kirby and Clote results based on restricted ultrapower constructions

P. Clote and J. Krajiček. Open problems. *Oxford Logic Guides*, volume 23, *Arithmetic*, *proof theory and computational complexity* (Prague, 1991). Oxford University Press, New York, 1993.

Problem 1 (Fundamental problem F). Does every countable model of $B\Sigma_1$ have a proper end extension satisfying $I\Delta_0$?

A. J. Wilkie and J. B. Paris. On the existence of end extensions of models of bounded induction. In *Logic*, *methodology and philosophy of science*, *VIII (Moscow, 1987)*, volume 126 of *Stud. Logic Found. Math.*, 143–161, North-Holland, 1989.

 $I\Delta_0$ -fullness: saturation condition

Theorem.

For every countable model *M* of $B\Sigma_1$, if *M* is $I\Delta_0$ -full, then there exists *K* such that $M \subset_e K$ and *K* satisfies $I\Delta_0$.

5 natural conditions, each of which implies $I\Delta_0$ -fullness the most natural one: *exp*

REMARK. A direct proof that any countable model of $B\Sigma_1$ which is closed under exponentiation has a proper end extension to a model of $I\Delta_0$ may be obtained by mimicking the proof of Theorem 4 but with "Semantic Tableaux consistency of Γ " in place of " Γ -full" and adding a new constant symbol $\pi > M$ to ensure that the end extension is proper.

向下 イヨト イヨト

5 natural conditions, each of which implies $I\Delta_0$ -fullness the most natural one: *exp*

REMARK. A direct proof that any countable model of $B\Sigma_1$ which is closed under exponentiation has a proper end extension to a model of $I\Delta_0$ may be obtained by mimicking the proof of Theorem 4 but with "Semantic Tableaux consistency of Γ " in place of " Γ -full" and adding a new constant symbol $\pi > M$ to ensure that the end extension is proper.

2016 paper: elaboration of this idea, also for 3 more of the Wilkie-Paris conditions (the 5th is irrelevant)

向下 イヨト イヨト

5 natural conditions, each of which implies $I\Delta_0$ -fullness the most natural one: *exp*

REMARK. A direct proof that any countable model of $B\Sigma_1$ which is closed under exponentiation has a proper end extension to a model of $I\Delta_0$ may be obtained by mimicking the proof of Theorem 4 but with "Semantic Tableaux consistency of Γ " in place of " Γ -full" and adding a new constant symbol $\pi > M$ to ensure that the end extension is proper.

<u>2016 paper</u>: elaboration of this idea, also for 3 more of the Wilkie-Paris conditions (the 5th is irrelevant)

2020 paper: application of the same basic idea, to give an alternative proof of Clote's theorem and to prove an extra result

<u>Problem 2.</u> Does every model of $I\Sigma_1$ have a proper end extension satisfying $I\Delta_0$? (recall that $I\Sigma_1 \Rightarrow B\Sigma_1$)

・ 同 ト ・ ヨ ト ・ ヨ ト

Our approach (for both proofs) combines (a) the well-known procedure of extending a consistent theory to a maximal consistent one

(b) the consideration of structures whose universes are sets of definable elements.

.

Our approach (for both proofs) combines (a) the well-known procedure of extending a consistent theory to a maximal consistent one (b) the consideration of structures whose universes are sets of definable elements.

A. Enayat and T. L. Wong. Unifying the model theory of first-order and second-order arithmetic via WKL_0^* . Ann. Pure Appl. Logic 168 (2017), 1247–1252.

伺い イヨト イヨト

Our approach (for both proofs) combines (a) the well-known procedure of extending a consistent theory to a maximal consistent one (b) the consideration of structures whose universes are sets

of definable elements.

A. Enayat and T. L. Wong. Unifying the model theory of first-order and second-order arithmetic via WKL_0^* . Ann. Pure Appl. Logic 168 (2017), 1247–1252.

<u>Theorem.</u> For any $n \ge 1$, $B\Sigma_n \Leftrightarrow L\Delta_n \Rightarrow I\Delta_n$ (see page 63 in P. Hájek and P. Pudlák. *Metamathematics of first-order arithmetic*. Springer, 1993)

Problem 3 (Technical problem no. 34). For $n \ge 1$, is $I\Delta_n$ equivalent to $B\Sigma_n$?

イロト イポト イヨト イヨト

T. Slaman. Σ_n -bounding and Δ_n -induction. *Proc. Amer. Math. Soc.* 132 (2004), 2449–2456.

<u>Theorem.</u> (a) For $n \ge 2$, $I\Delta_n \Leftrightarrow B\Sigma_n$. (b) $I\Delta_1 + exp \Rightarrow B\Sigma_1$ (hence $I\Delta_1 + exp \Leftrightarrow B\Sigma_1 + exp$).

伺下 イヨト イヨト

T. Slaman. Σ_n -bounding and Δ_n -induction. *Proc. Amer. Math. Soc.* 132 (2004), 2449–2456.

<u>Theorem.</u> (a) For $n \ge 2$, $I\Delta_n \Leftrightarrow B\Sigma_n$. (b) $I\Delta_1 + exp \Rightarrow B\Sigma_1$ (hence $I\Delta_1 + exp \Leftrightarrow B\Sigma_1 + exp$).

<u>Problem 4.</u> Does every model of $B\Sigma_1 + exp$ have a proper end extension satisfying $I\Delta_0$?

伺下 イヨト イヨト

T. Slaman. Σ_n -bounding and Δ_n -induction. *Proc. Amer. Math. Soc.* 132 (2004), 2449–2456.

<u>Theorem.</u> (a) For $n \ge 2$, $I\Delta_n \Leftrightarrow B\Sigma_n$. (b) $I\Delta_1 + exp \Rightarrow B\Sigma_1$ (hence $I\Delta_1 + exp \Leftrightarrow B\Sigma_1 + exp$).

<u>Problem 4.</u> Does every model of $B\Sigma_1 + exp$ have a proper end extension satisfying $I\Delta_0$?

<u>Problem 5.</u> Does every model of $I\Delta_1 + exp$ have a proper end extension satisfying $I\Delta_0$?

Remarks. Without assuming Slaman's result, (i) If "yes" to Problem 5, then "yes" to Problem 4. (ii) If "yes" to Problem 5, then (by a well-known result) $I\Delta_1 + exp \Rightarrow B\Sigma_1$, i.e., (b) of Slaman's result follows.

・ 同 ト ・ ヨ ト ・ ヨ ト

<u>Theorem.</u> Every model of $I\Delta_1 + exp$ has a proper end extension to a model of *IOpen*.

回 と く ヨ と く ヨ と

<u>Theorem.</u> Every model of $I\Delta_1 + exp$ has a proper end extension to a model of *IOpen*.

N. Thapen. A note on Δ_1 induction and Σ_1 collection. *Fund. Math.* 186 (2005), 79–84.

 e_p is the axiom $\forall x \exists y (x < p(y) \land ``x^y \text{ exists''})$, where p is any primitive recursive function

<u>Theorem.</u> $I\Delta_1 + e_p \Rightarrow B\Sigma_1$.

Remarks. (i) Thapen's result implies part (b) of Slaman's result, since *exp* is (equivalent to) e_p for the specific primitive recursive function p(y)=y+1.

(ii) Another instance of e_p is Ω_1 , i.e., the axiom $\forall x \exists y (y=x^{|x|})$, where |x| denotes the length of x.

<u>Problem 6.</u> Does every model of $I\Delta_1 + e_p$ have a proper end extension satisfying $I\Delta_0$?

イロン 不問 とうほう 不良 とう

э

<u>Theorem.</u> Every model of $I\Delta_1 + exp$ has a proper end extension to a model of *IOpen*.

N. Thapen. A note on Δ_1 induction and Σ_1 collection. *Fund. Math.* 186 (2005), 79–84.

 e_p is the axiom $\forall x \exists y (x < p(y) \land ``x^y \text{ exists''})$, where p is any primitive recursive function

<u>Theorem.</u> $I\Delta_1 + e_p \Rightarrow B\Sigma_1$.

Remarks. (i) Thapen's result implies part (b) of Slaman's result, since *exp* is (equivalent to) e_p for the specific primitive recursive function p(y)=y+1.

(ii) Another instance of e_p is Ω_1 , i.e., the axiom $\forall x \exists y (y=x^{|x|})$, where |x| denotes the length of x.

<u>Problem 6.</u> Does every model of $I\Delta_1 + e_p$ have a proper end extension satisfying $I\Delta_0$?

イロン 不問 とうほう 不良 とう

э

<u>Theorem.</u> Every model of $I\Delta_1 + e_p$ has a proper end extension to a model of *IOpen*.

> < 三 > < 三 >

<u>Theorem.</u> Every model of $I\Delta_1+e_p$ has a proper end extension to a model of *IOpen*.

S. Boughattas. L'arithmétique ouverte et ses modèles non-standards. *J. Symbolic Logic* 56 (1991), 700–714.

<u>Theorem.</u> Every model of *IOpen* has a proper end extension to a model of *IOpen*.

伺 ト イヨト イヨト

<u>Theorem.</u> Every model of $I\Delta_1 + e_p$ has a proper end extension to a model of *IOpen*.

S. Boughattas. L'arithmétique ouverte et ses modèles non-standards. *J. Symbolic Logic* 56 (1991), 700–714.

<u>Theorem.</u> Every model of *IOpen* has a proper end extension to a model of *IOpen*.

Remark. $I\Delta_1 + e_p$ is far stronger than *IOpen*, so our method needs a lot of improvement!

伺下 イヨト イヨト