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C. Dimitracopoulos and V. Paschalis. End extensions of
models of weak arithmetic theories. Notre Dame J. Formal
Logic 57 (2016), 181–193.

C. Dimitracopoulos and V. Paschalis. End extensions of
models of fragments of PA. Arch. Math. Logic 59 (2020),
817–833.

C. Dimitracopoulos and V. Paschalis. End extensions of
models of ∆1 induction. in preparation.

IΣn: induction for Σn formulas (plus base theory)

BΣn: I∆0 + collection for Σn formulas

Theorem (MacDowell-Specker, 1961)

Every model of PA has a proper elementary end extension.
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J. B. Paris and L. A. S. Kirby. Σn-collection schemas in
arithmetic, in Logic Colloquium ’77, 199–029, North-Holland,
1978.

Theorem. For any n≥2, if M is a countable model of BΣn, then
M has a proper Σn-elementary end extension satisfying I∆0.

P. Clote. A note on the MacDowell-Specker theorem. Fund.
Math. 127 (1986), 163–170.

The Kirby-Paris construction used very strongly the countability of
the model. In view of the cardinality-free statement of the
MacDowell-Specker Theorem, we might expect the conclusion of
Theorem 1 to hold for models of any cardinality. Such a possibility
was first suggested by A. Wilkie.

Theorem. For any n≥2, if M is a model of IΣn, then M has a
proper Σn-elementary end extension satisfying I∆0.

C. Dimitracopoulos & V. Paschalis University of Athens End extensions of models of fragments of PA



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

J. B. Paris and L. A. S. Kirby. Σn-collection schemas in
arithmetic, in Logic Colloquium ’77, 199–029, North-Holland,
1978.

Theorem. For any n≥2, if M is a countable model of BΣn, then
M has a proper Σn-elementary end extension satisfying I∆0.

P. Clote. A note on the MacDowell-Specker theorem. Fund.
Math. 127 (1986), 163–170.

The Kirby-Paris construction used very strongly the countability of
the model. In view of the cardinality-free statement of the
MacDowell-Specker Theorem, we might expect the conclusion of
Theorem 1 to hold for models of any cardinality. Such a possibility
was first suggested by A. Wilkie.

Theorem. For any n≥2, if M is a model of IΣn, then M has a
proper Σn-elementary end extension satisfying I∆0.

C. Dimitracopoulos & V. Paschalis University of Athens End extensions of models of fragments of PA



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Remark. Proofs of the Paris-Kirby and Clote results based on
restricted ultrapower constructions

P. Clote and J. Krajiček. Open problems. Oxford Logic Guides,
volume 23, Arithmetic, proof theory and computational complexity
(Prague, 1991). Oxford University Press, New York, 1993.

Problem 1 (Fundamental problem F). Does every countable
model of BΣ1 have a proper end extension satisfying I∆0?

A. J. Wilkie and J. B. Paris. On the existence of end extensions
of models of bounded induction. In Logic, methodology and
philosophy of science, VIII (Moscow, 1987), volume 126 of Stud.
Logic Found. Math., 143–161, North-Holland, 1989.

I∆0-fullness: saturation condition

Theorem.
For every countable model M of BΣ1, if M is I∆0-full, then
there exists K such that M ⊂e K and K satisfies I∆0.
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5 natural conditions, each of which implies I∆0-fullness
the most natural one: exp

REMARK. A direct proof that any countable model of BΣ1 which
is closed under exponentiation has a proper end extension to a
model of I∆0 may be obtained by mimicking the proof of Theorem 4
but with “Semantic Tableaux consistency of Γ” in place of “Γ-full”
and adding a new constant symbol π > M to ensure that the end
extension is proper.

2016 paper: elaboration of this idea, also for 3 more of the
Wilkie-Paris conditions (the 5th is irrelevant)

2020 paper: application of the same basic idea, to give an
alternative proof of Clote’s theorem and to prove an extra
result

Problem 2. Does every model of IΣ1 have a proper end
extension satisfying I∆0? (recall that IΣ1 ⇒ BΣ1)
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Theorem. Problem 2 has a positive solution, i.e., every model
of IΣ1 has a proper end extension to a model of I∆0.

Our approach (for both proofs) combines
(a) the well-known procedure of extending a consistent
theory to a maximal consistent one
(b) the consideration of structures whose universes are sets
of definable elements.

A. Enayat and T. L. Wong. Unifying the model theory of
first-order and second-order arithmetic via WKL∗

0. Ann. Pure
Appl. Logic 168 (2017), 1247–1252.

Theorem. For any n≥1, BΣn⇔L∆n⇒I∆n
(see page 63 in P. Hájek and P. Pudlák. Metamathematics of
first-order arithmetic. Springer, 1993)

Problem 3 (Technical problem no. 34). For n≥1, is I∆n
equivalent to BΣn?
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T. Slaman. Σn-bounding and ∆n-induction. Proc. Amer.
Math. Soc. 132 (2004), 2449–2456.

Theorem. (a) For n≥2, I∆n⇔BΣn.
(b) I∆1+exp⇒BΣ1 (hence I∆1+exp⇔BΣ1+exp).

Problem 4. Does every model of BΣ1+exp have a proper end
extension satisfying I∆0?

Problem 5. Does every model of I∆1+exp have a proper end
extension satisfying I∆0?

Remarks. Without assuming Slaman’s result,
(i) If “yes” to Problem 5, then “yes” to Problem 4.
(ii) If “yes” to Problem 5, then (by a well-known result)
I∆1+exp⇒BΣ1, i.e., (b) of Slaman’s result follows.
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Theorem. Every model of I∆1+exp has a proper end
extension to a model of IOpen.

N. Thapen. A note on ∆1 induction and Σ1 collection. Fund.
Math. 186 (2005), 79–84.

ep is the axiom ∀x∃y (x<p(y) ∧ ‘‘xy exists”),
where p is any primitive recursive function

Theorem. I∆1+ep⇒BΣ1.

Remarks. (i) Thapen’s result implies part (b) of Slaman’s
result, since exp is (equivalent to) ep for the specific primitive
recursive function p(y)=y+1.
(ii) Another instance of ep is Ω1, i.e., the axiom ∀x∃y (y=x|x|),
where |x| denotes the length of x.

Problem 6. Does every model of I∆1+ep have a proper end
extension satisfying I∆0?
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Theorem. Every model of I∆1+ep has a proper end extension
to a model of IOpen.

S. Boughattas. L’arithmétique ouverte et ses modèles
non-standards. J. Symbolic Logic 56 (1991), 700–714.

Theorem. Every model of IOpen has a proper end extension
to a model of IOpen.

Remark. I∆1+ep is far stronger than IOpen, so our method
needs a lot of improvement!
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